电解质和电极材料对超级电容器性能作用的最新进展综述

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ashutosh Patel, Suresh Kumar Patel, R. S. Singh, R. P. Patel
{"title":"电解质和电极材料对超级电容器性能作用的最新进展综述","authors":"Ashutosh Patel,&nbsp;Suresh Kumar Patel,&nbsp;R. S. Singh,&nbsp;R. P. Patel","doi":"10.1186/s11671-024-04053-1","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors currently hold a prominent position in energy storage systems due to their exceptionally high power density, although they fall behind batteries and fuel cells in terms of energy density. This paper examines contemporary approaches aimed at enhancing the energy density of supercapacitors by adopting hybrid configurations, alongside considerations of their power density, rate capability, and cycle stability. Given that electrodes play a pivotal role in supercapacitor cells, this review focuses on the design of hybrid electrode structures with elevated specific capacitance, shedding light on the underlying mechanisms. Factors such as available surface area, porosity, and conductivity of the constituent materials significantly influence electrode performance, prompting the adoption of strategies such as nanostructuring. Additionally, the paper delves into the impact of novel bio-based hybrid electrolytes, drawing upon literature data to outline the fabrication of various hybrid electrode materials incorporating conducting polymers like polyaniline and polypyrrole, as well as metal oxides, carbon compounds, and hybrid electrolytes such as ionic liquids, gel polymers, aqueous, and solid polymer electrolytes. The discussion explores the contributions of different components and methodologies to overall capacitance, with a primary emphasis on the mechanisms of energy storage through non-faradic electrical double-layer capacitance and faradaic pseudo-capacitance. Furthermore, the paper addresses the electrochemical performance of hybrid components, examining their concentrations and functioning via diverse charge storage techniques.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04053-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Review on recent advancements in the role of electrolytes and electrode materials on supercapacitor performances\",\"authors\":\"Ashutosh Patel,&nbsp;Suresh Kumar Patel,&nbsp;R. S. Singh,&nbsp;R. P. Patel\",\"doi\":\"10.1186/s11671-024-04053-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supercapacitors currently hold a prominent position in energy storage systems due to their exceptionally high power density, although they fall behind batteries and fuel cells in terms of energy density. This paper examines contemporary approaches aimed at enhancing the energy density of supercapacitors by adopting hybrid configurations, alongside considerations of their power density, rate capability, and cycle stability. Given that electrodes play a pivotal role in supercapacitor cells, this review focuses on the design of hybrid electrode structures with elevated specific capacitance, shedding light on the underlying mechanisms. Factors such as available surface area, porosity, and conductivity of the constituent materials significantly influence electrode performance, prompting the adoption of strategies such as nanostructuring. Additionally, the paper delves into the impact of novel bio-based hybrid electrolytes, drawing upon literature data to outline the fabrication of various hybrid electrode materials incorporating conducting polymers like polyaniline and polypyrrole, as well as metal oxides, carbon compounds, and hybrid electrolytes such as ionic liquids, gel polymers, aqueous, and solid polymer electrolytes. The discussion explores the contributions of different components and methodologies to overall capacitance, with a primary emphasis on the mechanisms of energy storage through non-faradic electrical double-layer capacitance and faradaic pseudo-capacitance. Furthermore, the paper addresses the electrochemical performance of hybrid components, examining their concentrations and functioning via diverse charge storage techniques.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-024-04053-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04053-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04053-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,超级电容器因其超高的功率密度而在储能系统中占据重要地位,但在能量密度方面却落后于电池和燃料电池。本文研究了旨在通过采用混合配置提高超级电容器能量密度的现代方法,同时考虑了超级电容器的功率密度、速率能力和循环稳定性。鉴于电极在超级电容器电池中起着举足轻重的作用,本综述将重点关注具有较高比电容的混合电极结构的设计,并阐明其基本机制。组成材料的可用表面积、孔隙率和电导率等因素对电极性能有重大影响,促使人们采用纳米结构等策略。此外,论文还深入探讨了新型生物基混合电解质的影响,利用文献数据概述了各种混合电极材料的制造过程,其中包含聚苯胺和聚吡咯等导电聚合物、金属氧化物、碳化合物以及离子液体、凝胶聚合物、水性和固体聚合物电解质等混合电解质。讨论探讨了不同成分和方法对整体电容的贡献,主要重点是通过非法拉第双层电容和法拉第伪电容进行能量存储的机制。此外,论文还探讨了混合元件的电化学性能,通过不同的电荷存储技术研究了它们的浓度和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on recent advancements in the role of electrolytes and electrode materials on supercapacitor performances

Supercapacitors currently hold a prominent position in energy storage systems due to their exceptionally high power density, although they fall behind batteries and fuel cells in terms of energy density. This paper examines contemporary approaches aimed at enhancing the energy density of supercapacitors by adopting hybrid configurations, alongside considerations of their power density, rate capability, and cycle stability. Given that electrodes play a pivotal role in supercapacitor cells, this review focuses on the design of hybrid electrode structures with elevated specific capacitance, shedding light on the underlying mechanisms. Factors such as available surface area, porosity, and conductivity of the constituent materials significantly influence electrode performance, prompting the adoption of strategies such as nanostructuring. Additionally, the paper delves into the impact of novel bio-based hybrid electrolytes, drawing upon literature data to outline the fabrication of various hybrid electrode materials incorporating conducting polymers like polyaniline and polypyrrole, as well as metal oxides, carbon compounds, and hybrid electrolytes such as ionic liquids, gel polymers, aqueous, and solid polymer electrolytes. The discussion explores the contributions of different components and methodologies to overall capacitance, with a primary emphasis on the mechanisms of energy storage through non-faradic electrical double-layer capacitance and faradaic pseudo-capacitance. Furthermore, the paper addresses the electrochemical performance of hybrid components, examining their concentrations and functioning via diverse charge storage techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信