Vishal Kumar Parida, Mario Vino Lincy Gnanaguru, Suneel Kumar Srivastava, Shamik Chowdhury and Ashok Kumar Gupta
{"title":"固定化硫掺杂Bi2O3/MnO2光催化剂在连续模式下同时去除实际废水中的对乙酰氨基酚、磺胺甲噁唑和碘己醇†。","authors":"Vishal Kumar Parida, Mario Vino Lincy Gnanaguru, Suneel Kumar Srivastava, Shamik Chowdhury and Ashok Kumar Gupta","doi":"10.1039/D4EW00501E","DOIUrl":null,"url":null,"abstract":"<p >Advanced oxidation processes like heterogeneous photocatalysis can degrade recalcitrant compounds. However, the overall potency of most semiconductor-based photocatalysts in continuous operation and real wastewater matrices remains inadequate. This study investigates the simultaneous removal of three contaminants, namely, acetaminophen (ACT), sulfamethoxazole (SMX), and iohexol (IOX), from actual municipal wastewater (MWW) and hospital wastewater (HWW) by utilizing a moving bed biofilm system coupled with a filtration unit, followed by a continuous photocatalytic reactor. Here, a sulfur-doped Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>/MnO<small><sub>2</sub></small> Z-scheme heterojunction photocatalyst immobilized over low-cost and eco-friendly clay beads (2S-BOMO CCB) was employed to degrade an ACT–SMX–IOX mixture in a continuous photocatalytic reactor. Under optimal conditions, removal efficiencies of 87.1 ± 1.4%, 82.6 ± 1.9%, and 77.5 ± 2.3% were attained for ACT, SMX, and IOX, respectively. The feasibility of reusing the spent photocatalyst was also investigated over ten consecutive cycles. Further, this study confirmed that the superoxide anion, hydroxyl radical, and singlet oxygen were dominant oxidative species for ACT–SMX–IOX degradation. However, the removal efficiency of ACT–SMX–IOX by 2S-BOMO CCB was significantly reduced due to the presence of various interfering agents in real wastewater. Nonetheless, when the hybrid system was employed, approximately 93.8 ± 2.7% and 89.4 ± 3.6% of ACT, 89.6 ± 1.8% and 83.7 ± 1.1% of SMX, and 84.5 ± 1.7% and 81.5 ± 3.3% of IOX were eliminated from MWW and HWW, respectively. These results endorse the applicability of the developed integrated technology for removing pharmaceutical contaminants from real wastewater.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 12","pages":" 3319-3338"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous removal of acetaminophen, sulfamethoxazole, and iohexol from real wastewater in continuous mode by an immobilized sulfur-doped Bi2O3/MnO2 photocatalyst†\",\"authors\":\"Vishal Kumar Parida, Mario Vino Lincy Gnanaguru, Suneel Kumar Srivastava, Shamik Chowdhury and Ashok Kumar Gupta\",\"doi\":\"10.1039/D4EW00501E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Advanced oxidation processes like heterogeneous photocatalysis can degrade recalcitrant compounds. However, the overall potency of most semiconductor-based photocatalysts in continuous operation and real wastewater matrices remains inadequate. This study investigates the simultaneous removal of three contaminants, namely, acetaminophen (ACT), sulfamethoxazole (SMX), and iohexol (IOX), from actual municipal wastewater (MWW) and hospital wastewater (HWW) by utilizing a moving bed biofilm system coupled with a filtration unit, followed by a continuous photocatalytic reactor. Here, a sulfur-doped Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>/MnO<small><sub>2</sub></small> Z-scheme heterojunction photocatalyst immobilized over low-cost and eco-friendly clay beads (2S-BOMO CCB) was employed to degrade an ACT–SMX–IOX mixture in a continuous photocatalytic reactor. Under optimal conditions, removal efficiencies of 87.1 ± 1.4%, 82.6 ± 1.9%, and 77.5 ± 2.3% were attained for ACT, SMX, and IOX, respectively. The feasibility of reusing the spent photocatalyst was also investigated over ten consecutive cycles. Further, this study confirmed that the superoxide anion, hydroxyl radical, and singlet oxygen were dominant oxidative species for ACT–SMX–IOX degradation. However, the removal efficiency of ACT–SMX–IOX by 2S-BOMO CCB was significantly reduced due to the presence of various interfering agents in real wastewater. Nonetheless, when the hybrid system was employed, approximately 93.8 ± 2.7% and 89.4 ± 3.6% of ACT, 89.6 ± 1.8% and 83.7 ± 1.1% of SMX, and 84.5 ± 1.7% and 81.5 ± 3.3% of IOX were eliminated from MWW and HWW, respectively. These results endorse the applicability of the developed integrated technology for removing pharmaceutical contaminants from real wastewater.</p>\",\"PeriodicalId\":75,\"journal\":{\"name\":\"Environmental Science: Water Research & Technology\",\"volume\":\" 12\",\"pages\":\" 3319-3338\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Water Research & Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00501e\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00501e","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Simultaneous removal of acetaminophen, sulfamethoxazole, and iohexol from real wastewater in continuous mode by an immobilized sulfur-doped Bi2O3/MnO2 photocatalyst†
Advanced oxidation processes like heterogeneous photocatalysis can degrade recalcitrant compounds. However, the overall potency of most semiconductor-based photocatalysts in continuous operation and real wastewater matrices remains inadequate. This study investigates the simultaneous removal of three contaminants, namely, acetaminophen (ACT), sulfamethoxazole (SMX), and iohexol (IOX), from actual municipal wastewater (MWW) and hospital wastewater (HWW) by utilizing a moving bed biofilm system coupled with a filtration unit, followed by a continuous photocatalytic reactor. Here, a sulfur-doped Bi2O3/MnO2 Z-scheme heterojunction photocatalyst immobilized over low-cost and eco-friendly clay beads (2S-BOMO CCB) was employed to degrade an ACT–SMX–IOX mixture in a continuous photocatalytic reactor. Under optimal conditions, removal efficiencies of 87.1 ± 1.4%, 82.6 ± 1.9%, and 77.5 ± 2.3% were attained for ACT, SMX, and IOX, respectively. The feasibility of reusing the spent photocatalyst was also investigated over ten consecutive cycles. Further, this study confirmed that the superoxide anion, hydroxyl radical, and singlet oxygen were dominant oxidative species for ACT–SMX–IOX degradation. However, the removal efficiency of ACT–SMX–IOX by 2S-BOMO CCB was significantly reduced due to the presence of various interfering agents in real wastewater. Nonetheless, when the hybrid system was employed, approximately 93.8 ± 2.7% and 89.4 ± 3.6% of ACT, 89.6 ± 1.8% and 83.7 ± 1.1% of SMX, and 84.5 ± 1.7% and 81.5 ± 3.3% of IOX were eliminated from MWW and HWW, respectively. These results endorse the applicability of the developed integrated technology for removing pharmaceutical contaminants from real wastewater.
期刊介绍:
Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.