{"title":"紫外线辐射抑制海水提铀过程中的海洋生物污损†。","authors":"Meng Yan, Qianhong Gao and Dadong Shao","doi":"10.1039/D4EW00731J","DOIUrl":null,"url":null,"abstract":"<p >Marine biofouling, which is related to the survival and reproduction of marine microorganisms, seriously limits uranium (U(<small>VI</small>)) extraction from seawater. In this work, the complex and varied effect of ultraviolet (UV) light on marine biofouling was revealed. Experimental results reveal that UV irradiation can influence and alter the biosynthesis pathways of amino acid, ribonucleic acid, glycoprotein and glycolipids and control the extracellular polymeric substances (EPS) on the surface of the classic U(<small>VI</small>) extraction material poly(amidoxime) (PAO). The survival and reproduction of marine microorganisms on PAO surface can be effectively restrained by UV irradiation, and the adsorption capacities of PAO for U(<small>VI</small>) increase from ∼36.0 mg g<small><sup>−1</sup></small> to ∼56.0 mg g<small><sup>−1</sup></small> at pH 8.2 and 298 K. It results in the reduction of <em>Cyanobacteria</em>, <em>Bacteroidetes</em> and <em>Actinobacteria</em> phyla. The increased <em>Proteobacteria</em> phylum is important for the transformation of microorganisms in seawater. The change in the biological community reveals the excellent anti-biofouling effect of UV radiation in solving the marine biofouling problem during the uranium extraction task.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 12","pages":" 3230-3237"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraviolet radiation restrains marine biofouling during uranium extraction from seawater†\",\"authors\":\"Meng Yan, Qianhong Gao and Dadong Shao\",\"doi\":\"10.1039/D4EW00731J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Marine biofouling, which is related to the survival and reproduction of marine microorganisms, seriously limits uranium (U(<small>VI</small>)) extraction from seawater. In this work, the complex and varied effect of ultraviolet (UV) light on marine biofouling was revealed. Experimental results reveal that UV irradiation can influence and alter the biosynthesis pathways of amino acid, ribonucleic acid, glycoprotein and glycolipids and control the extracellular polymeric substances (EPS) on the surface of the classic U(<small>VI</small>) extraction material poly(amidoxime) (PAO). The survival and reproduction of marine microorganisms on PAO surface can be effectively restrained by UV irradiation, and the adsorption capacities of PAO for U(<small>VI</small>) increase from ∼36.0 mg g<small><sup>−1</sup></small> to ∼56.0 mg g<small><sup>−1</sup></small> at pH 8.2 and 298 K. It results in the reduction of <em>Cyanobacteria</em>, <em>Bacteroidetes</em> and <em>Actinobacteria</em> phyla. The increased <em>Proteobacteria</em> phylum is important for the transformation of microorganisms in seawater. The change in the biological community reveals the excellent anti-biofouling effect of UV radiation in solving the marine biofouling problem during the uranium extraction task.</p>\",\"PeriodicalId\":75,\"journal\":{\"name\":\"Environmental Science: Water Research & Technology\",\"volume\":\" 12\",\"pages\":\" 3230-3237\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Water Research & Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00731j\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00731j","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
海洋生物污损与海洋微生物的生存和繁殖有关,严重限制了从海水中提取铀(U(VI))。本研究揭示了紫外线(UV)对海洋生物污损的复杂多样的影响。实验结果表明,紫外线辐照可影响和改变氨基酸、核糖核酸、糖蛋白和糖脂的生物合成途径,并控制经典的铀(VI)萃取材料聚(脒肟)(PAO)表面的胞外高分子物质(EPS)。紫外线照射可有效抑制海洋微生物在 PAO 表面的生存和繁殖,在 pH 8.2 和 298 K 条件下,PAO 对 U(VI)的吸附量从∼36.0 mg g-1 增加到∼56.0 mg g-1。变形菌门的增加对海水中微生物的转化非常重要。生物群落的变化表明,紫外线辐射在解决铀提取过程中的海洋生物污损问题方面具有卓越的防污效果。
Ultraviolet radiation restrains marine biofouling during uranium extraction from seawater†
Marine biofouling, which is related to the survival and reproduction of marine microorganisms, seriously limits uranium (U(VI)) extraction from seawater. In this work, the complex and varied effect of ultraviolet (UV) light on marine biofouling was revealed. Experimental results reveal that UV irradiation can influence and alter the biosynthesis pathways of amino acid, ribonucleic acid, glycoprotein and glycolipids and control the extracellular polymeric substances (EPS) on the surface of the classic U(VI) extraction material poly(amidoxime) (PAO). The survival and reproduction of marine microorganisms on PAO surface can be effectively restrained by UV irradiation, and the adsorption capacities of PAO for U(VI) increase from ∼36.0 mg g−1 to ∼56.0 mg g−1 at pH 8.2 and 298 K. It results in the reduction of Cyanobacteria, Bacteroidetes and Actinobacteria phyla. The increased Proteobacteria phylum is important for the transformation of microorganisms in seawater. The change in the biological community reveals the excellent anti-biofouling effect of UV radiation in solving the marine biofouling problem during the uranium extraction task.
期刊介绍:
Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.