{"title":"级联反合成积分反馈,提高稳定性和性能","authors":"Armin M. Zand;Ankit Gupta;Mustafa Khammash","doi":"10.1109/LCSYS.2024.3489396","DOIUrl":null,"url":null,"abstract":"Precise intracellular regulation and robust perfect adaptation can be achieved using biomolecular integral controllers and it holds enormous potential for synthetic biology applications. In this letter, we consider the cascaded implementation of a class of such integrator motifs. Our cascaded integrators underpin proportional-integral-derivative (PID) control structures, which we leverage to suggest ways to improve dynamic performance. Moreover, we demonstrate how our cascaded strategy can be harnessed to enhance robust stability in a class of uncertain reaction networks. We also discuss the genetic implementation of our controllers and the natural occurrence of their cascaded sequestration pairs in bacterial pathogens.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2481-2486"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10740005","citationCount":"0","resultStr":"{\"title\":\"Cascaded Antithetic Integral Feedback for Enhanced Stability and Performance\",\"authors\":\"Armin M. Zand;Ankit Gupta;Mustafa Khammash\",\"doi\":\"10.1109/LCSYS.2024.3489396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise intracellular regulation and robust perfect adaptation can be achieved using biomolecular integral controllers and it holds enormous potential for synthetic biology applications. In this letter, we consider the cascaded implementation of a class of such integrator motifs. Our cascaded integrators underpin proportional-integral-derivative (PID) control structures, which we leverage to suggest ways to improve dynamic performance. Moreover, we demonstrate how our cascaded strategy can be harnessed to enhance robust stability in a class of uncertain reaction networks. We also discuss the genetic implementation of our controllers and the natural occurrence of their cascaded sequestration pairs in bacterial pathogens.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2481-2486\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10740005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740005/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10740005/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Cascaded Antithetic Integral Feedback for Enhanced Stability and Performance
Precise intracellular regulation and robust perfect adaptation can be achieved using biomolecular integral controllers and it holds enormous potential for synthetic biology applications. In this letter, we consider the cascaded implementation of a class of such integrator motifs. Our cascaded integrators underpin proportional-integral-derivative (PID) control structures, which we leverage to suggest ways to improve dynamic performance. Moreover, we demonstrate how our cascaded strategy can be harnessed to enhance robust stability in a class of uncertain reaction networks. We also discuss the genetic implementation of our controllers and the natural occurrence of their cascaded sequestration pairs in bacterial pathogens.