利用增强现实脑机接口实现半自主连续机械臂控制

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Kirill Kokorin;Syeda R. Zehra;Jing Mu;Peter Yoo;David B. Grayden;Sam E. John
{"title":"利用增强现实脑机接口实现半自主连续机械臂控制","authors":"Kirill Kokorin;Syeda R. Zehra;Jing Mu;Peter Yoo;David B. Grayden;Sam E. John","doi":"10.1109/TNSRE.2024.3500217","DOIUrl":null,"url":null,"abstract":"Noninvasive augmented-reality (AR) brain-computer interfaces (BCIs) that use steady-state visually evoked potentials (SSVEPs) typically adopt a fully-autonomous goal-selection framework to control a robot, where automation is used to compensate for the low information transfer rate of the BCI. This scheme improves task performance but users may prefer direct control (DC) of robot motion. To provide users with a balance of autonomous assistance and manual control, we developed a shared control (SC) system for continuous control of robot translation using an SSVEP AR-BCI, which we tested in a 3D reaching task. The SC system used the BCI input and robot sensor data to continuously predict which object the user wanted to reach, generated an assistance signal, and regulated the level of assistance based on prediction confidence. Eighteen healthy participants took part in our study and each completed 24 reaching trials using DC and SC. Compared to DC, SC significantly improved (paired two-tailed t-test, Holm-corrected \n<inline-formula> <tex-math>$\\alpha \\lt 0.05$ </tex-math></inline-formula>\n) mean task success rate (\n<inline-formula> <tex-math>${p} \\lt 0.0001$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$\\mu =36.1$ </tex-math></inline-formula>\n%, 95% CI [25.3%, 46.9%]), normalised reaching trajectory length (\n<inline-formula> <tex-math>${p} \\lt 0.0001$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$\\mu = -26.8$ </tex-math></inline-formula>\n%, 95% CI [−36.0%, −17.7%]), and participant workload (\n<inline-formula> <tex-math>${p} =0.02$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$\\mu = -11.6$ </tex-math></inline-formula>\n, 95% CI [−21.1, −2.0]) measured with the NASA Task Load Index. Therefore, users of SC can control the robot effectively, while experiencing increased agency. Our system can personalise assistive technology by providing users with the ability to select their preferred level of autonomous assistance.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"32 ","pages":"4098-4108"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755142","citationCount":"0","resultStr":"{\"title\":\"Semi-Autonomous Continuous Robotic Arm Control Using an Augmented Reality Brain-Computer Interface\",\"authors\":\"Kirill Kokorin;Syeda R. Zehra;Jing Mu;Peter Yoo;David B. Grayden;Sam E. John\",\"doi\":\"10.1109/TNSRE.2024.3500217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noninvasive augmented-reality (AR) brain-computer interfaces (BCIs) that use steady-state visually evoked potentials (SSVEPs) typically adopt a fully-autonomous goal-selection framework to control a robot, where automation is used to compensate for the low information transfer rate of the BCI. This scheme improves task performance but users may prefer direct control (DC) of robot motion. To provide users with a balance of autonomous assistance and manual control, we developed a shared control (SC) system for continuous control of robot translation using an SSVEP AR-BCI, which we tested in a 3D reaching task. The SC system used the BCI input and robot sensor data to continuously predict which object the user wanted to reach, generated an assistance signal, and regulated the level of assistance based on prediction confidence. Eighteen healthy participants took part in our study and each completed 24 reaching trials using DC and SC. Compared to DC, SC significantly improved (paired two-tailed t-test, Holm-corrected \\n<inline-formula> <tex-math>$\\\\alpha \\\\lt 0.05$ </tex-math></inline-formula>\\n) mean task success rate (\\n<inline-formula> <tex-math>${p} \\\\lt 0.0001$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$\\\\mu =36.1$ </tex-math></inline-formula>\\n%, 95% CI [25.3%, 46.9%]), normalised reaching trajectory length (\\n<inline-formula> <tex-math>${p} \\\\lt 0.0001$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$\\\\mu = -26.8$ </tex-math></inline-formula>\\n%, 95% CI [−36.0%, −17.7%]), and participant workload (\\n<inline-formula> <tex-math>${p} =0.02$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$\\\\mu = -11.6$ </tex-math></inline-formula>\\n, 95% CI [−21.1, −2.0]) measured with the NASA Task Load Index. Therefore, users of SC can control the robot effectively, while experiencing increased agency. Our system can personalise assistive technology by providing users with the ability to select their preferred level of autonomous assistance.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"32 \",\"pages\":\"4098-4108\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10755142/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10755142/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用稳态视觉诱发电位(SSVEPs)的无创增强现实(AR)脑机接口(BCIs)通常采用完全自主的目标选择框架来控制机器人,其中自动化用于补偿BCI的低信息传输速率。这种方案可以提高任务性能,但用户可能更喜欢直接控制(DC)机器人的运动。为了让用户在自主辅助和手动控制之间取得平衡,我们开发了一种共享控制(SC)系统,使用 SSVEP AR-BCI 对机器人平移进行连续控制,并在三维伸手任务中进行了测试。SC 系统使用 BCI 输入和机器人传感器数据持续预测用户想要触及的物体,生成辅助信号,并根据预测置信度调节辅助水平。18 名健康的参与者参加了我们的研究,每人使用 DC 和 SC 完成了 24 次伸手试验。与DC相比,SC明显提高了平均任务成功率(配对双尾t检验,Holm校正的α值为0.05)({p} \lt 0.0001$ , $\mu =36.1$ %, 95% CI [25.3%, 46.9%])、归一化到达轨迹长度(${p} \lt 0.0001$ , $\mu = -26.8$ %, 95% CI [-36.0%, -17.7%])以及使用美国宇航局任务负荷指数测量的参与者工作量(${p} =0.02$ , $\mu = -11.6$ , 95% CI [-21.1, -2.0])。因此,SC 用户可以有效地控制机器人,同时体验到更多的自主性。我们的系统可以为用户提供个性化的辅助技术,让他们能够选择自己喜欢的自主辅助水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Autonomous Continuous Robotic Arm Control Using an Augmented Reality Brain-Computer Interface
Noninvasive augmented-reality (AR) brain-computer interfaces (BCIs) that use steady-state visually evoked potentials (SSVEPs) typically adopt a fully-autonomous goal-selection framework to control a robot, where automation is used to compensate for the low information transfer rate of the BCI. This scheme improves task performance but users may prefer direct control (DC) of robot motion. To provide users with a balance of autonomous assistance and manual control, we developed a shared control (SC) system for continuous control of robot translation using an SSVEP AR-BCI, which we tested in a 3D reaching task. The SC system used the BCI input and robot sensor data to continuously predict which object the user wanted to reach, generated an assistance signal, and regulated the level of assistance based on prediction confidence. Eighteen healthy participants took part in our study and each completed 24 reaching trials using DC and SC. Compared to DC, SC significantly improved (paired two-tailed t-test, Holm-corrected $\alpha \lt 0.05$ ) mean task success rate ( ${p} \lt 0.0001$ , $\mu =36.1$ %, 95% CI [25.3%, 46.9%]), normalised reaching trajectory length ( ${p} \lt 0.0001$ , $\mu = -26.8$ %, 95% CI [−36.0%, −17.7%]), and participant workload ( ${p} =0.02$ , $\mu = -11.6$ , 95% CI [−21.1, −2.0]) measured with the NASA Task Load Index. Therefore, users of SC can control the robot effectively, while experiencing increased agency. Our system can personalise assistive technology by providing users with the ability to select their preferred level of autonomous assistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信