广义任意阶范德尔波尔-杜芬振荡器的全局动力学

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jueliang Zhou , Lan Zou
{"title":"广义任意阶范德尔波尔-杜芬振荡器的全局动力学","authors":"Jueliang Zhou ,&nbsp;Lan Zou","doi":"10.1016/j.cnsns.2024.108445","DOIUrl":null,"url":null,"abstract":"<div><div>We study the global bifurcation diagram and corresponding global phase portraits in the Poincaré disc for a generalized van der Pol-Duffing oscillator, which has four nonlinear terms with arbitrary orders. This nonlinear oscillator possesses more diverse and complicated dynamical behaviours, including the heteroclinic bifurcation, generalized Hopf bifurcation and pitchfork bifurcation. Moreover, theoretical results are exhibited via numerical simulations.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108445"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics of a generalized arbitrary order Van der Pol–Duffing Oscillator\",\"authors\":\"Jueliang Zhou ,&nbsp;Lan Zou\",\"doi\":\"10.1016/j.cnsns.2024.108445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the global bifurcation diagram and corresponding global phase portraits in the Poincaré disc for a generalized van der Pol-Duffing oscillator, which has four nonlinear terms with arbitrary orders. This nonlinear oscillator possesses more diverse and complicated dynamical behaviours, including the heteroclinic bifurcation, generalized Hopf bifurcation and pitchfork bifurcation. Moreover, theoretical results are exhibited via numerical simulations.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"140 \",\"pages\":\"Article 108445\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424006300\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424006300","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有任意阶数的四个非线性项的广义范德波尔-杜芬振荡器在波因卡雷圆盘中的全局分岔图和相应的全局相位图。这种非线性振荡器具有更多样、更复杂的动力学行为,包括异折线分岔、广义霍普夫分岔和叉形分岔。此外,还通过数值模拟展示了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global dynamics of a generalized arbitrary order Van der Pol–Duffing Oscillator
We study the global bifurcation diagram and corresponding global phase portraits in the Poincaré disc for a generalized van der Pol-Duffing oscillator, which has four nonlinear terms with arbitrary orders. This nonlinear oscillator possesses more diverse and complicated dynamical behaviours, including the heteroclinic bifurcation, generalized Hopf bifurcation and pitchfork bifurcation. Moreover, theoretical results are exhibited via numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信