关于一类具有对流项和可变指数的薛定谔-基尔霍夫双相问题

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Noureddine Moujane, Mohamed El Ouaarabi
{"title":"关于一类具有对流项和可变指数的薛定谔-基尔霍夫双相问题","authors":"Noureddine Moujane, Mohamed El Ouaarabi","doi":"10.1016/j.cnsns.2024.108453","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence of solutions for double-phase problems with variable exponents of the Kirchhoff–Schrödinger type, incorporating a convection term. By imposing certain assumptions and utilizing the topological degree for a class of <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:math>-demicontinuous operators, along with the Galerkin method within the framework of Musielak–Orlicz–Sobolev spaces, we establish the existence of strong generalized solutions and weak solutions for the problems under consideration.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"18 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of Schrödinger–Kirchhoff-double phase problems with convection term and variable exponents\",\"authors\":\"Noureddine Moujane, Mohamed El Ouaarabi\",\"doi\":\"10.1016/j.cnsns.2024.108453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the existence of solutions for double-phase problems with variable exponents of the Kirchhoff–Schrödinger type, incorporating a convection term. By imposing certain assumptions and utilizing the topological degree for a class of <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:math>-demicontinuous operators, along with the Galerkin method within the framework of Musielak–Orlicz–Sobolev spaces, we establish the existence of strong generalized solutions and weak solutions for the problems under consideration.\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cnsns.2024.108453\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2024.108453","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了基尔霍夫-薛定谔类型的可变指数双相问题的解的存在性,其中包含一个对流项。通过施加某些假设并利用一类 (S+) 半连续算子的拓扑度,以及 Musielak-Orlicz-Sobolev 空间框架内的 Galerkin 方法,我们确定了所考虑问题的强广义解和弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of Schrödinger–Kirchhoff-double phase problems with convection term and variable exponents
In this paper, we investigate the existence of solutions for double-phase problems with variable exponents of the Kirchhoff–Schrödinger type, incorporating a convection term. By imposing certain assumptions and utilizing the topological degree for a class of (S+)-demicontinuous operators, along with the Galerkin method within the framework of Musielak–Orlicz–Sobolev spaces, we establish the existence of strong generalized solutions and weak solutions for the problems under consideration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信