Ana Arnaiz, Marta Guembe-García, Mario Martínez, Miriam Trigo-López, Edurne González, Issei Otsuka, Saúl Vallejos
{"title":"利用制备成亲水性薄膜、涂层和电纺纳米纤维的智能含氟聚合物裸眼检测嗜肺军团菌","authors":"Ana Arnaiz, Marta Guembe-García, Mario Martínez, Miriam Trigo-López, Edurne González, Issei Otsuka, Saúl Vallejos","doi":"10.1016/j.snb.2024.136976","DOIUrl":null,"url":null,"abstract":"<em>Legionella pneumophila</em> is a significant public health threat, responsible for severe diseases such as Legionnaires’ disease. Traditional detection methods are often labour-intensive, time-consuming, and require sophisticated equipment. This study introduces smart fluorogenic polymeric materials for the naked-eye detection of <em>L. pneumophila</em> via protease activity. These materials, prepared as hydrophilic films, cellulose-coated linear copolymers, and electrospun nanofibers, operate on an OFF/ON FRET system, emitting fluorescence under UV light upon interaction with <em>L. pneumophila</em> proteases. Characterisation confirmed the successful immobilisation of the peptide substrate and its response to proteases. The sensors showed moderate to high sensitivity and specificity, with detection limits of 2.91×10<sup>5</sup>, 3.64×10⁵, and 4.04×10<sup>5</sup> CFUs/mL for the film, copolymer, and nanofiber formats, respectively. Cross-reactivity tests identified only <em>Pseudomonas aeruginosa</em> as an interferent. This novel approach offers rapid, simple, and cost-effective <em>L. pneumophila</em> detection with visible results under UV light, suitable for clinical and environmental samples. It highlights the potential for broader pathogen detection applications.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"14 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naked-eye Detection of Legionella pneumophila Using Smart Fluorogenic Polymers Prepared as Hydrophilic Films, Coatings, and Electrospun Nanofibers\",\"authors\":\"Ana Arnaiz, Marta Guembe-García, Mario Martínez, Miriam Trigo-López, Edurne González, Issei Otsuka, Saúl Vallejos\",\"doi\":\"10.1016/j.snb.2024.136976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<em>Legionella pneumophila</em> is a significant public health threat, responsible for severe diseases such as Legionnaires’ disease. Traditional detection methods are often labour-intensive, time-consuming, and require sophisticated equipment. This study introduces smart fluorogenic polymeric materials for the naked-eye detection of <em>L. pneumophila</em> via protease activity. These materials, prepared as hydrophilic films, cellulose-coated linear copolymers, and electrospun nanofibers, operate on an OFF/ON FRET system, emitting fluorescence under UV light upon interaction with <em>L. pneumophila</em> proteases. Characterisation confirmed the successful immobilisation of the peptide substrate and its response to proteases. The sensors showed moderate to high sensitivity and specificity, with detection limits of 2.91×10<sup>5</sup>, 3.64×10⁵, and 4.04×10<sup>5</sup> CFUs/mL for the film, copolymer, and nanofiber formats, respectively. Cross-reactivity tests identified only <em>Pseudomonas aeruginosa</em> as an interferent. This novel approach offers rapid, simple, and cost-effective <em>L. pneumophila</em> detection with visible results under UV light, suitable for clinical and environmental samples. It highlights the potential for broader pathogen detection applications.\",\"PeriodicalId\":425,\"journal\":{\"name\":\"Sensors and Actuators B: Chemical\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators B: Chemical\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.snb.2024.136976\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.136976","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Naked-eye Detection of Legionella pneumophila Using Smart Fluorogenic Polymers Prepared as Hydrophilic Films, Coatings, and Electrospun Nanofibers
Legionella pneumophila is a significant public health threat, responsible for severe diseases such as Legionnaires’ disease. Traditional detection methods are often labour-intensive, time-consuming, and require sophisticated equipment. This study introduces smart fluorogenic polymeric materials for the naked-eye detection of L. pneumophila via protease activity. These materials, prepared as hydrophilic films, cellulose-coated linear copolymers, and electrospun nanofibers, operate on an OFF/ON FRET system, emitting fluorescence under UV light upon interaction with L. pneumophila proteases. Characterisation confirmed the successful immobilisation of the peptide substrate and its response to proteases. The sensors showed moderate to high sensitivity and specificity, with detection limits of 2.91×105, 3.64×10⁵, and 4.04×105 CFUs/mL for the film, copolymer, and nanofiber formats, respectively. Cross-reactivity tests identified only Pseudomonas aeruginosa as an interferent. This novel approach offers rapid, simple, and cost-effective L. pneumophila detection with visible results under UV light, suitable for clinical and environmental samples. It highlights the potential for broader pathogen detection applications.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.