利用临床预测模型进行个性化抗菌药敏感性检测,为合理使用抗生素提供依据

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alex Howard, David M. Hughes, Peter L. Green, Anoop Velluva, Alessandro Gerada, Simon Maskell, Iain E. Buchan, William Hope
{"title":"利用临床预测模型进行个性化抗菌药敏感性检测,为合理使用抗生素提供依据","authors":"Alex Howard, David M. Hughes, Peter L. Green, Anoop Velluva, Alessandro Gerada, Simon Maskell, Iain E. Buchan, William Hope","doi":"10.1038/s41467-024-54192-3","DOIUrl":null,"url":null,"abstract":"<p>Antimicrobial susceptibility testing is a key weapon against antimicrobial resistance. Diagnostic microbiology laboratories use one-size-fits-all testing approaches that are often imprecise, inefficient, and inequitable. Here, we report a personalised approach that adapts laboratory testing for urinary tract infection to maximise the number of appropriate treatment options for each patient. We develop and assess susceptibility prediction models for 12 antibiotics on real-world healthcare data using an individual-level simulation study. When combined with decision thresholds that prioritise selection of World Health Organisation Access category antibiotics (those least likely to induce antimicrobial resistance), the personalised approach delivers more susceptible results (results that encourage prescription of that antibiotic) per specimen for Access category antibiotics than a standard testing approach, without compromising provision of susceptible results overall. Here, we show that personalised antimicrobial susceptibility testing could help tackle antimicrobial resistance by safely providing more Access category antibiotic treatment options to clinicians managing urinary tract infection.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalised antimicrobial susceptibility testing with clinical prediction modelling informs appropriate antibiotic use\",\"authors\":\"Alex Howard, David M. Hughes, Peter L. Green, Anoop Velluva, Alessandro Gerada, Simon Maskell, Iain E. Buchan, William Hope\",\"doi\":\"10.1038/s41467-024-54192-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimicrobial susceptibility testing is a key weapon against antimicrobial resistance. Diagnostic microbiology laboratories use one-size-fits-all testing approaches that are often imprecise, inefficient, and inequitable. Here, we report a personalised approach that adapts laboratory testing for urinary tract infection to maximise the number of appropriate treatment options for each patient. We develop and assess susceptibility prediction models for 12 antibiotics on real-world healthcare data using an individual-level simulation study. When combined with decision thresholds that prioritise selection of World Health Organisation Access category antibiotics (those least likely to induce antimicrobial resistance), the personalised approach delivers more susceptible results (results that encourage prescription of that antibiotic) per specimen for Access category antibiotics than a standard testing approach, without compromising provision of susceptible results overall. Here, we show that personalised antimicrobial susceptibility testing could help tackle antimicrobial resistance by safely providing more Access category antibiotic treatment options to clinicians managing urinary tract infection.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54192-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54192-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

抗菌药物药敏试验是对抗抗菌药物耐药性的关键武器。微生物诊断实验室使用的 "一刀切 "检测方法往往不精确、效率低且不公平。在此,我们报告了一种个性化的方法,它能调整尿路感染的实验室检测,最大限度地为每位患者提供合适的治疗方案。我们利用个人层面的模拟研究,在真实医疗数据的基础上开发并评估了 12 种抗生素的药敏预测模型。当与优先选择世界卫生组织准入类抗生素(最不可能诱发抗菌药耐药性的抗生素)的决策阈值相结合时,与标准检测方法相比,个性化方法可为每个标本提供更多的准入类抗生素药敏结果(鼓励处方该抗生素的结果),而不会影响总体药敏结果的提供。在此,我们展示了个性化抗菌药物药敏试验可以安全地为治疗尿路感染的临床医生提供更多的抗菌药物治疗选择,从而帮助解决抗菌药物耐药性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Personalised antimicrobial susceptibility testing with clinical prediction modelling informs appropriate antibiotic use

Personalised antimicrobial susceptibility testing with clinical prediction modelling informs appropriate antibiotic use

Antimicrobial susceptibility testing is a key weapon against antimicrobial resistance. Diagnostic microbiology laboratories use one-size-fits-all testing approaches that are often imprecise, inefficient, and inequitable. Here, we report a personalised approach that adapts laboratory testing for urinary tract infection to maximise the number of appropriate treatment options for each patient. We develop and assess susceptibility prediction models for 12 antibiotics on real-world healthcare data using an individual-level simulation study. When combined with decision thresholds that prioritise selection of World Health Organisation Access category antibiotics (those least likely to induce antimicrobial resistance), the personalised approach delivers more susceptible results (results that encourage prescription of that antibiotic) per specimen for Access category antibiotics than a standard testing approach, without compromising provision of susceptible results overall. Here, we show that personalised antimicrobial susceptibility testing could help tackle antimicrobial resistance by safely providing more Access category antibiotic treatment options to clinicians managing urinary tract infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信