Xufan Li, Samuel Wyss, Emanuil Yanev, Qing-Jie Li, Shuang Wu, Yongwen Sun, Raymond R. Unocic, Joseph Stage, Matthew Strasbourg, Lucas M. Sassi, Yingxin Zhu, Ju Li, Yang Yang, James Hone, Nicholas Borys, P. James Schuck, Avetik R. Harutyunyan
{"title":"纳米合金种子在铬合金蒸气中按宽度连续生长出原子级超薄量子纳米带","authors":"Xufan Li, Samuel Wyss, Emanuil Yanev, Qing-Jie Li, Shuang Wu, Yongwen Sun, Raymond R. Unocic, Joseph Stage, Matthew Strasbourg, Lucas M. Sassi, Yingxin Zhu, Ju Li, Yang Yang, James Hone, Nicholas Borys, P. James Schuck, Avetik R. Harutyunyan","doi":"10.1038/s41467-024-54413-9","DOIUrl":null,"url":null,"abstract":"<p>Nanoribbons (NRs) of atomic layer transition metal dichalcogenides (TMDs) can boost the rapidly emerging field of quantum materials owing to their width-dependent phases and electronic properties. However, the controllable downscaling of width by direct growth and the underlying mechanism remain elusive. Here, we demonstrate the vapor-liquid-solid growth of single crystal of single layer NRs of a series of TMDs (MeX<sub>2</sub>: Me = Mo, W; X = S, Se) under chalcogen vapor atmosphere, seeded by pre-deposited and respective transition metal-alloyed nanoparticles that also control the NR width. We find linear dependence of growth rate on supersaturation, known as a criterion for continues growth mechanism, which decreases with decreasing of NR width driven by the Gibbs-Thomson effect. The NRs show width-dependent photoluminescence and strain-induced quantum emission signatures with up to ≈ 90% purity of single photons. We propose the path and underlying mechanism for width-controllable growth of TMD NRs for applications in quantum optoelectronics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Width-dependent continuous growth of atomically thin quantum nanoribbons from nanoalloy seeds in chalcogen vapor\",\"authors\":\"Xufan Li, Samuel Wyss, Emanuil Yanev, Qing-Jie Li, Shuang Wu, Yongwen Sun, Raymond R. Unocic, Joseph Stage, Matthew Strasbourg, Lucas M. Sassi, Yingxin Zhu, Ju Li, Yang Yang, James Hone, Nicholas Borys, P. James Schuck, Avetik R. Harutyunyan\",\"doi\":\"10.1038/s41467-024-54413-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoribbons (NRs) of atomic layer transition metal dichalcogenides (TMDs) can boost the rapidly emerging field of quantum materials owing to their width-dependent phases and electronic properties. However, the controllable downscaling of width by direct growth and the underlying mechanism remain elusive. Here, we demonstrate the vapor-liquid-solid growth of single crystal of single layer NRs of a series of TMDs (MeX<sub>2</sub>: Me = Mo, W; X = S, Se) under chalcogen vapor atmosphere, seeded by pre-deposited and respective transition metal-alloyed nanoparticles that also control the NR width. We find linear dependence of growth rate on supersaturation, known as a criterion for continues growth mechanism, which decreases with decreasing of NR width driven by the Gibbs-Thomson effect. The NRs show width-dependent photoluminescence and strain-induced quantum emission signatures with up to ≈ 90% purity of single photons. We propose the path and underlying mechanism for width-controllable growth of TMD NRs for applications in quantum optoelectronics.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54413-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54413-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
原子层过渡金属二掺杂物(TMDs)的纳米带(NRs)因其宽度相关的相位和电子特性,可推动量子材料领域的快速发展。然而,通过直接生长实现宽度的可控缩减及其内在机理仍然难以捉摸。在此,我们展示了一系列 TMDs(MeX2:Me = Mo、W;X = S、Se)单层 NR 的气相-液相-固相生长过程。我们发现生长率与过饱和度呈线性关系,过饱和度是继续生长机制的标准,在吉布斯-汤姆森效应的驱动下,过饱和度随 NR 宽度的减小而减小。NR 显示出宽度依赖性光致发光和应变诱导量子发射特征,单光子纯度高达 ≈ 90%。我们提出了 TMD NRs 宽度可控生长的路径和基本机制,以应用于量子光电子学。
Width-dependent continuous growth of atomically thin quantum nanoribbons from nanoalloy seeds in chalcogen vapor
Nanoribbons (NRs) of atomic layer transition metal dichalcogenides (TMDs) can boost the rapidly emerging field of quantum materials owing to their width-dependent phases and electronic properties. However, the controllable downscaling of width by direct growth and the underlying mechanism remain elusive. Here, we demonstrate the vapor-liquid-solid growth of single crystal of single layer NRs of a series of TMDs (MeX2: Me = Mo, W; X = S, Se) under chalcogen vapor atmosphere, seeded by pre-deposited and respective transition metal-alloyed nanoparticles that also control the NR width. We find linear dependence of growth rate on supersaturation, known as a criterion for continues growth mechanism, which decreases with decreasing of NR width driven by the Gibbs-Thomson effect. The NRs show width-dependent photoluminescence and strain-induced quantum emission signatures with up to ≈ 90% purity of single photons. We propose the path and underlying mechanism for width-controllable growth of TMD NRs for applications in quantum optoelectronics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.