Han Liu , Eman I.K. Ibrahim , Maddalena Centanni , Céline Sarr , Karthik Venkatakrishnan , Lena E. Friberg
{"title":"临床肿瘤药物开发中的生物标记物、生存和安全性综合建模","authors":"Han Liu , Eman I.K. Ibrahim , Maddalena Centanni , Céline Sarr , Karthik Venkatakrishnan , Lena E. Friberg","doi":"10.1016/j.addr.2024.115476","DOIUrl":null,"url":null,"abstract":"<div><div>Model-based approaches, including population pharmacokinetic-pharmacodynamic modeling, have become an essential component in the clinical phases of oncology drug development. Over the past two decades, models have evolved to describe the temporal dynamics of biomarkers and tumor size, treatment-related adverse events, and their links to survival. Integrated models, defined here as models that incorporate at least two pharmacodynamic/ outcome variables, are applied to answer drug development questions through simulations, e.g., to support the exploration of alternative dosing strategies and study designs in subgroups of patients or other tumor indications. It is expected that these pharmacometric approaches will be expanded as regulatory authorities place further emphasis on early and individualized dosage optimization and inclusive patient-focused development strategies. This review provides an overview of integrated models in the literature, examples of the considerations that need to be made when applying these advanced pharmacometric approaches, and an outlook on the expected further expansion of model-informed drug development of anticancer drugs.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"216 ","pages":"Article 115476"},"PeriodicalIF":15.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated modeling of biomarkers, survival and safety in clinical oncology drug development\",\"authors\":\"Han Liu , Eman I.K. Ibrahim , Maddalena Centanni , Céline Sarr , Karthik Venkatakrishnan , Lena E. Friberg\",\"doi\":\"10.1016/j.addr.2024.115476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Model-based approaches, including population pharmacokinetic-pharmacodynamic modeling, have become an essential component in the clinical phases of oncology drug development. Over the past two decades, models have evolved to describe the temporal dynamics of biomarkers and tumor size, treatment-related adverse events, and their links to survival. Integrated models, defined here as models that incorporate at least two pharmacodynamic/ outcome variables, are applied to answer drug development questions through simulations, e.g., to support the exploration of alternative dosing strategies and study designs in subgroups of patients or other tumor indications. It is expected that these pharmacometric approaches will be expanded as regulatory authorities place further emphasis on early and individualized dosage optimization and inclusive patient-focused development strategies. This review provides an overview of integrated models in the literature, examples of the considerations that need to be made when applying these advanced pharmacometric approaches, and an outlook on the expected further expansion of model-informed drug development of anticancer drugs.</div></div>\",\"PeriodicalId\":7254,\"journal\":{\"name\":\"Advanced drug delivery reviews\",\"volume\":\"216 \",\"pages\":\"Article 115476\"},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced drug delivery reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169409X24002989\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X24002989","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Integrated modeling of biomarkers, survival and safety in clinical oncology drug development
Model-based approaches, including population pharmacokinetic-pharmacodynamic modeling, have become an essential component in the clinical phases of oncology drug development. Over the past two decades, models have evolved to describe the temporal dynamics of biomarkers and tumor size, treatment-related adverse events, and their links to survival. Integrated models, defined here as models that incorporate at least two pharmacodynamic/ outcome variables, are applied to answer drug development questions through simulations, e.g., to support the exploration of alternative dosing strategies and study designs in subgroups of patients or other tumor indications. It is expected that these pharmacometric approaches will be expanded as regulatory authorities place further emphasis on early and individualized dosage optimization and inclusive patient-focused development strategies. This review provides an overview of integrated models in the literature, examples of the considerations that need to be made when applying these advanced pharmacometric approaches, and an outlook on the expected further expansion of model-informed drug development of anticancer drugs.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.