Junye Pan, Jiahui Chen, Bingxin Duan, Yuxi Zhang, Peiran Hou, Yanqing Zhu, Min Hu, Wangnan Li, Yi-Bing Cheng, Jianfeng Lu
{"title":"电子束蒸发 NiOX 用于高效稳定的半透明过氧化物太阳能电池和组件","authors":"Junye Pan, Jiahui Chen, Bingxin Duan, Yuxi Zhang, Peiran Hou, Yanqing Zhu, Min Hu, Wangnan Li, Yi-Bing Cheng, Jianfeng Lu","doi":"10.1039/d4ta07138g","DOIUrl":null,"url":null,"abstract":"Semi-transparent perovskite solar cells (ST-PSCs) have tremendous potential as smart windows owing to their higher efficiency and visible transmittance. However, most of previous ST-PSCs were fabricated by spin-coating methods with vulnerable materials, which are not stable at higher temperature (> 60 °C) and the processes are not scalable. Herein, thermal stable ST-PSCs have been fabricated by using vacuum deposited CsPbBr3 perovskite and electron-beam evaporation deposited NiOX. Furthermore, we further introduced an ultrathin P3HT buffer layer before depositing NiOX to avoid the damage of perovskite morphology by electron-beam. We found that this P3HT buffer layer not only protects the perovskite film from the damage of electron beam, but also facilitates the hole transfer from perovskite to NiOX. As a result, we achieved champion efficiencies of 7.1% for small area (active area = 0.16 cm2) solar cells and 5.5% for 5 cm × 5 cm mini-modules (active area = 10.0 cm2) with an AVT of 49.1%. Moreover, the non-encapsulated devices retained 93% of their initial performance after aging at 65 °C and a relative humidity (RH) of 55 ± 10% for 30 days.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"35 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron-Beam-Evaporated NiOX for Efficient and Stable Semi-Transparent Perovskite Solar Cells and Modules\",\"authors\":\"Junye Pan, Jiahui Chen, Bingxin Duan, Yuxi Zhang, Peiran Hou, Yanqing Zhu, Min Hu, Wangnan Li, Yi-Bing Cheng, Jianfeng Lu\",\"doi\":\"10.1039/d4ta07138g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-transparent perovskite solar cells (ST-PSCs) have tremendous potential as smart windows owing to their higher efficiency and visible transmittance. However, most of previous ST-PSCs were fabricated by spin-coating methods with vulnerable materials, which are not stable at higher temperature (> 60 °C) and the processes are not scalable. Herein, thermal stable ST-PSCs have been fabricated by using vacuum deposited CsPbBr3 perovskite and electron-beam evaporation deposited NiOX. Furthermore, we further introduced an ultrathin P3HT buffer layer before depositing NiOX to avoid the damage of perovskite morphology by electron-beam. We found that this P3HT buffer layer not only protects the perovskite film from the damage of electron beam, but also facilitates the hole transfer from perovskite to NiOX. As a result, we achieved champion efficiencies of 7.1% for small area (active area = 0.16 cm2) solar cells and 5.5% for 5 cm × 5 cm mini-modules (active area = 10.0 cm2) with an AVT of 49.1%. Moreover, the non-encapsulated devices retained 93% of their initial performance after aging at 65 °C and a relative humidity (RH) of 55 ± 10% for 30 days.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta07138g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07138g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electron-Beam-Evaporated NiOX for Efficient and Stable Semi-Transparent Perovskite Solar Cells and Modules
Semi-transparent perovskite solar cells (ST-PSCs) have tremendous potential as smart windows owing to their higher efficiency and visible transmittance. However, most of previous ST-PSCs were fabricated by spin-coating methods with vulnerable materials, which are not stable at higher temperature (> 60 °C) and the processes are not scalable. Herein, thermal stable ST-PSCs have been fabricated by using vacuum deposited CsPbBr3 perovskite and electron-beam evaporation deposited NiOX. Furthermore, we further introduced an ultrathin P3HT buffer layer before depositing NiOX to avoid the damage of perovskite morphology by electron-beam. We found that this P3HT buffer layer not only protects the perovskite film from the damage of electron beam, but also facilitates the hole transfer from perovskite to NiOX. As a result, we achieved champion efficiencies of 7.1% for small area (active area = 0.16 cm2) solar cells and 5.5% for 5 cm × 5 cm mini-modules (active area = 10.0 cm2) with an AVT of 49.1%. Moreover, the non-encapsulated devices retained 93% of their initial performance after aging at 65 °C and a relative humidity (RH) of 55 ± 10% for 30 days.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.