可印刷 PVDF-TrFE 压电多功能器件的单片集成:从传感到驱动

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yeji Lee, Vineeth Kumar Bandari, Varun Paul Paliakkara, Sheila Monteiro Augusto, Rico Ehrler, Olav Hellwig, Sebastian Amann, Klaus Stöwe, Robert Thalheim, Oliver G. Schmidt
{"title":"可印刷 PVDF-TrFE 压电多功能器件的单片集成:从传感到驱动","authors":"Yeji Lee, Vineeth Kumar Bandari, Varun Paul Paliakkara, Sheila Monteiro Augusto, Rico Ehrler, Olav Hellwig, Sebastian Amann, Klaus Stöwe, Robert Thalheim, Oliver G. Schmidt","doi":"10.1002/adfm.202413500","DOIUrl":null,"url":null,"abstract":"This study demonstrates the development of multifunctional printable piezoelectric actuators using PVDF-TrFE and PEDOT:PSS, capable of operating at low voltages and supporting a wide range of applications. By leveraging the high piezoelectric coefficient of PVDF-TrFE and the conductivity of PEDOT:PSS, the actuators exhibit stable performance with precise inkjet printing deposition and optimized waveform parameters. The fabrication process integrates inkjet printing and standard lithography, enabling monolithic integration for high-performance actuation and multifunctional sensing. The PVDF-TrFE-based actuators achieve low-voltage operation (as low as 50 V), efficient energy transfer, and mechanical stability. Enhancing the beta phase of PVDF-TrFE resulted in a deflection of ≈600 µm and vortex generation, crucial for lift in aerial robotic applications. Durability tests confirmed minimal performance degradation after 2,300 actuation cycles. Beyond mechanical deflection, the actuators exhibit sound detection and strain sensing capabilities. Experimental evaluations validated their ability to differentiate sound frequencies, detect muscle strain, and replicate bio-inspired flight dynamics. A preliminary proof of concept for a double-wing structure demonstrated lift generation at low voltages and resonant frequencies. The results indicate that these piezoelectric actuators are well-suited for miniaturized robotic applications, particularly in aerial locomotion and multifunctional sensing, opening new possibilities for innovations in micro-robotics, wearables, and aerial robotics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"22 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolithic Integration of Printable PVDF-TrFE Piezoelectric Multifunctional Devices: From Sensing to Actuation\",\"authors\":\"Yeji Lee, Vineeth Kumar Bandari, Varun Paul Paliakkara, Sheila Monteiro Augusto, Rico Ehrler, Olav Hellwig, Sebastian Amann, Klaus Stöwe, Robert Thalheim, Oliver G. Schmidt\",\"doi\":\"10.1002/adfm.202413500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates the development of multifunctional printable piezoelectric actuators using PVDF-TrFE and PEDOT:PSS, capable of operating at low voltages and supporting a wide range of applications. By leveraging the high piezoelectric coefficient of PVDF-TrFE and the conductivity of PEDOT:PSS, the actuators exhibit stable performance with precise inkjet printing deposition and optimized waveform parameters. The fabrication process integrates inkjet printing and standard lithography, enabling monolithic integration for high-performance actuation and multifunctional sensing. The PVDF-TrFE-based actuators achieve low-voltage operation (as low as 50 V), efficient energy transfer, and mechanical stability. Enhancing the beta phase of PVDF-TrFE resulted in a deflection of ≈600 µm and vortex generation, crucial for lift in aerial robotic applications. Durability tests confirmed minimal performance degradation after 2,300 actuation cycles. Beyond mechanical deflection, the actuators exhibit sound detection and strain sensing capabilities. Experimental evaluations validated their ability to differentiate sound frequencies, detect muscle strain, and replicate bio-inspired flight dynamics. A preliminary proof of concept for a double-wing structure demonstrated lift generation at low voltages and resonant frequencies. The results indicate that these piezoelectric actuators are well-suited for miniaturized robotic applications, particularly in aerial locomotion and multifunctional sensing, opening new possibilities for innovations in micro-robotics, wearables, and aerial robotics.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202413500\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413500","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了使用 PVDF-TrFE 和 PEDOT:PSS 开发的多功能可打印压电致动器,这种致动器能够在低电压下工作,支持广泛的应用。利用 PVDF-TrFE 的高压电系数和 PEDOT:PSS 的导电性,该致动器通过精确的喷墨打印沉积和优化的波形参数表现出稳定的性能。该制造工艺集成了喷墨打印和标准光刻技术,实现了高性能致动器和多功能传感的单片集成。基于 PVDF-TrFE 的致动器实现了低压工作(低至 50 V)、高效的能量传递和机械稳定性。通过增强 PVDF-TrFE 的β相,可产生≈600 µm 的挠度和涡流,这对空中机器人应用中的升力至关重要。耐久性测试表明,经过 2300 次致动循环后,性能下降幅度极小。除机械挠度外,致动器还具有声音检测和应变传感能力。实验评估验证了它们区分声音频率、检测肌肉应变和复制生物启发飞行动力学的能力。双翼结构的初步概念验证表明,在低电压和共振频率下可产生升力。研究结果表明,这些压电致动器非常适合微型机器人应用,特别是在空中运动和多功能传感方面,为微型机器人、可穿戴设备和空中机器人的创新开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monolithic Integration of Printable PVDF-TrFE Piezoelectric Multifunctional Devices: From Sensing to Actuation

Monolithic Integration of Printable PVDF-TrFE Piezoelectric Multifunctional Devices: From Sensing to Actuation
This study demonstrates the development of multifunctional printable piezoelectric actuators using PVDF-TrFE and PEDOT:PSS, capable of operating at low voltages and supporting a wide range of applications. By leveraging the high piezoelectric coefficient of PVDF-TrFE and the conductivity of PEDOT:PSS, the actuators exhibit stable performance with precise inkjet printing deposition and optimized waveform parameters. The fabrication process integrates inkjet printing and standard lithography, enabling monolithic integration for high-performance actuation and multifunctional sensing. The PVDF-TrFE-based actuators achieve low-voltage operation (as low as 50 V), efficient energy transfer, and mechanical stability. Enhancing the beta phase of PVDF-TrFE resulted in a deflection of ≈600 µm and vortex generation, crucial for lift in aerial robotic applications. Durability tests confirmed minimal performance degradation after 2,300 actuation cycles. Beyond mechanical deflection, the actuators exhibit sound detection and strain sensing capabilities. Experimental evaluations validated their ability to differentiate sound frequencies, detect muscle strain, and replicate bio-inspired flight dynamics. A preliminary proof of concept for a double-wing structure demonstrated lift generation at low voltages and resonant frequencies. The results indicate that these piezoelectric actuators are well-suited for miniaturized robotic applications, particularly in aerial locomotion and multifunctional sensing, opening new possibilities for innovations in micro-robotics, wearables, and aerial robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信