可扩展搜索相似人类细胞的细胞图谱基础模型

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2024-11-20 DOI:10.1038/s41586-024-08411-y
Graham Heimberg, Tony Kuo, Daryle J. DePianto, Omar Salem, Tobias Heigl, Nathaniel Diamant, Gabriele Scalia, Tommaso Biancalani, Shannon J. Turley, Jason R. Rock, Héctor Corrada Bravo, Josh Kaminker, Jason A. Vander Heiden, Aviv Regev
{"title":"可扩展搜索相似人类细胞的细胞图谱基础模型","authors":"Graham Heimberg, Tony Kuo, Daryle J. DePianto, Omar Salem, Tobias Heigl, Nathaniel Diamant, Gabriele Scalia, Tommaso Biancalani, Shannon J. Turley, Jason R. Rock, Héctor Corrada Bravo, Josh Kaminker, Jason A. Vander Heiden, Aviv Regev","doi":"10.1038/s41586-024-08411-y","DOIUrl":null,"url":null,"abstract":"<p>Single-cell RNA-seq (scRNA-seq) has profiled hundreds of millions of human cells across organs, diseases, development, and perturbations to date. Mining these growing atlases could reveal cell-disease associations, discover cell states in unexpected tissue contexts, and relate <i>in vivo</i> biology to <i>in vitro</i> models. These require a common measure of cell similarity across the body and an efficient way to search. Here, we develop SCimilarity, a metric learning framework to learn a unified and interpretable representation that enables rapid queries of tens of millions of cell profiles from diverse studies for cells that are transcriptionally similar to an input cell profile or state. We use SCimilarity to query a 23.4 million cell atlas of 412 scRNA-seq studies for macrophage and fibroblast profiles from interstitial lung disease<sup>1</sup> and reveal similar cell profiles across other fibrotic diseases and tissues. The top scoring <i>in vitro</i> hit for the macrophage query was a 3D hydrogel system<sup>2</sup>, which we experimentally demonstrated reproduces this cell state. SCimilarity serves as a foundation model for single-cell profiles that enables researchers to query for similar cellular states across the human body, providing a powerful tool for generating biological insights from the Human Cell Atlas.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"19 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cell atlas foundation model for scalable search of similar human cells\",\"authors\":\"Graham Heimberg, Tony Kuo, Daryle J. DePianto, Omar Salem, Tobias Heigl, Nathaniel Diamant, Gabriele Scalia, Tommaso Biancalani, Shannon J. Turley, Jason R. Rock, Héctor Corrada Bravo, Josh Kaminker, Jason A. Vander Heiden, Aviv Regev\",\"doi\":\"10.1038/s41586-024-08411-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single-cell RNA-seq (scRNA-seq) has profiled hundreds of millions of human cells across organs, diseases, development, and perturbations to date. Mining these growing atlases could reveal cell-disease associations, discover cell states in unexpected tissue contexts, and relate <i>in vivo</i> biology to <i>in vitro</i> models. These require a common measure of cell similarity across the body and an efficient way to search. Here, we develop SCimilarity, a metric learning framework to learn a unified and interpretable representation that enables rapid queries of tens of millions of cell profiles from diverse studies for cells that are transcriptionally similar to an input cell profile or state. We use SCimilarity to query a 23.4 million cell atlas of 412 scRNA-seq studies for macrophage and fibroblast profiles from interstitial lung disease<sup>1</sup> and reveal similar cell profiles across other fibrotic diseases and tissues. The top scoring <i>in vitro</i> hit for the macrophage query was a 3D hydrogel system<sup>2</sup>, which we experimentally demonstrated reproduces this cell state. SCimilarity serves as a foundation model for single-cell profiles that enables researchers to query for similar cellular states across the human body, providing a powerful tool for generating biological insights from the Human Cell Atlas.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-024-08411-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08411-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,单细胞 RNA-seq(scRNA-seq)已分析了数以亿计的人类细胞,涉及器官、疾病、发育和干扰。挖掘这些不断增长的图谱可以揭示细胞与疾病的关联,发现意想不到的组织环境中的细胞状态,并将体内生物学与体外模型联系起来。这就需要一种通用的全身细胞相似性测量方法和一种高效的搜索方法。在这里,我们开发了 SCimilarity,这是一种度量学习框架,用于学习一种统一的、可解释的表示方法,从而能够快速查询来自不同研究的数千万个细胞图谱,寻找与输入的细胞图谱或状态具有转录相似性的细胞。我们利用 SCimilarity 查询了由 412 项 scRNA-seq 研究组成的 2,340 万个细胞图谱,其中包括间质性肺病1 的巨噬细胞和成纤维细胞图谱,并揭示了其他纤维化疾病和组织的类似细胞图谱。巨噬细胞查询中得分最高的体外结果是三维水凝胶系统2,我们通过实验证明了该系统能重现这种细胞状态。SCimilarity 是单细胞图谱的基础模型,使研究人员能够查询整个人体的相似细胞状态,为从人类细胞图谱中获得生物学见解提供了强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cell atlas foundation model for scalable search of similar human cells

Single-cell RNA-seq (scRNA-seq) has profiled hundreds of millions of human cells across organs, diseases, development, and perturbations to date. Mining these growing atlases could reveal cell-disease associations, discover cell states in unexpected tissue contexts, and relate in vivo biology to in vitro models. These require a common measure of cell similarity across the body and an efficient way to search. Here, we develop SCimilarity, a metric learning framework to learn a unified and interpretable representation that enables rapid queries of tens of millions of cell profiles from diverse studies for cells that are transcriptionally similar to an input cell profile or state. We use SCimilarity to query a 23.4 million cell atlas of 412 scRNA-seq studies for macrophage and fibroblast profiles from interstitial lung disease1 and reveal similar cell profiles across other fibrotic diseases and tissues. The top scoring in vitro hit for the macrophage query was a 3D hydrogel system2, which we experimentally demonstrated reproduces this cell state. SCimilarity serves as a foundation model for single-cell profiles that enables researchers to query for similar cellular states across the human body, providing a powerful tool for generating biological insights from the Human Cell Atlas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信