{"title":"多环芳香族聚合物纳米粒子具有强大的感染性颗粒吸附能力。","authors":"Yudai Oishi, Mako Toyoda, Nanami Hano, Chihiro Motozono, Takamasa Ueno and Makoto Takafuji","doi":"10.1039/D4TB01793E","DOIUrl":null,"url":null,"abstract":"<p >Nonspecific viral adsorption by polymer nanoparticles is more economical and superior in terms of operating cost and energy efficiency than viral adsorption using virus-specific antibodies and filtration techniques involving size exclusion in the order of tens of nanometres. In this study, we synthesised four types of polycyclic aromatic polymer (ArP) nanoparticles with different structures and evaluated their virus adsorption capability for infectious particles of the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ArP nanoparticles with a diameter of approximately 500 nm were prepared by one-pot precipitation polymerisation using structural isomers of bifunctional dihydroxynaphthalene (1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene) as phenol monomers, as well as 3-hydroxybenzoic acid and 3-aminophenol as comonomers to introduce carboxylic acid and amino groups, respectively. This wide range of phenolic monomers offers a powerful molecular design capability, enabling the optimisation of surface properties for the adsorption of various infectious virus particles. The virus adsorption capacity of the ArP nanoparticles exceeded 20 000 plaque-forming units and was found to be correlated with the nitrogen (primary and secondary amines) and quinone contents on the ArP nanoparticle surface. Furthermore, a polyvinylidene difluoride membrane filter uniformly coated with the ArP nanoparticles could remove viruses by filtration in a flow system.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 2","pages":" 568-576"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polycyclic aromatic polymer nanoparticles show potent infectious particle adsorption capability†\",\"authors\":\"Yudai Oishi, Mako Toyoda, Nanami Hano, Chihiro Motozono, Takamasa Ueno and Makoto Takafuji\",\"doi\":\"10.1039/D4TB01793E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nonspecific viral adsorption by polymer nanoparticles is more economical and superior in terms of operating cost and energy efficiency than viral adsorption using virus-specific antibodies and filtration techniques involving size exclusion in the order of tens of nanometres. In this study, we synthesised four types of polycyclic aromatic polymer (ArP) nanoparticles with different structures and evaluated their virus adsorption capability for infectious particles of the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ArP nanoparticles with a diameter of approximately 500 nm were prepared by one-pot precipitation polymerisation using structural isomers of bifunctional dihydroxynaphthalene (1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene) as phenol monomers, as well as 3-hydroxybenzoic acid and 3-aminophenol as comonomers to introduce carboxylic acid and amino groups, respectively. This wide range of phenolic monomers offers a powerful molecular design capability, enabling the optimisation of surface properties for the adsorption of various infectious virus particles. The virus adsorption capacity of the ArP nanoparticles exceeded 20 000 plaque-forming units and was found to be correlated with the nitrogen (primary and secondary amines) and quinone contents on the ArP nanoparticle surface. Furthermore, a polyvinylidene difluoride membrane filter uniformly coated with the ArP nanoparticles could remove viruses by filtration in a flow system.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 2\",\"pages\":\" 568-576\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01793e\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01793e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Polycyclic aromatic polymer nanoparticles show potent infectious particle adsorption capability†
Nonspecific viral adsorption by polymer nanoparticles is more economical and superior in terms of operating cost and energy efficiency than viral adsorption using virus-specific antibodies and filtration techniques involving size exclusion in the order of tens of nanometres. In this study, we synthesised four types of polycyclic aromatic polymer (ArP) nanoparticles with different structures and evaluated their virus adsorption capability for infectious particles of the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ArP nanoparticles with a diameter of approximately 500 nm were prepared by one-pot precipitation polymerisation using structural isomers of bifunctional dihydroxynaphthalene (1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene) as phenol monomers, as well as 3-hydroxybenzoic acid and 3-aminophenol as comonomers to introduce carboxylic acid and amino groups, respectively. This wide range of phenolic monomers offers a powerful molecular design capability, enabling the optimisation of surface properties for the adsorption of various infectious virus particles. The virus adsorption capacity of the ArP nanoparticles exceeded 20 000 plaque-forming units and was found to be correlated with the nitrogen (primary and secondary amines) and quinone contents on the ArP nanoparticle surface. Furthermore, a polyvinylidene difluoride membrane filter uniformly coated with the ArP nanoparticles could remove viruses by filtration in a flow system.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices