深度学习驱动的光学相干断层扫描分析用于急性冠状动脉综合征患者的心血管预后预测。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2024-09-27 eCollection Date: 2024-11-01 DOI:10.1093/ehjdh/ztae067
Tomoyo Hamana, Makoto Nishimori, Satoki Shibata, Hiroyuki Kawamori, Takayoshi Toba, Takashi Hiromasa, Shunsuke Kakizaki, Satoru Sasaki, Hiroyuki Fujii, Yuto Osumi, Seigo Iwane, Tetsuya Yamamoto, Shota Naniwa, Yuki Sakamoto, Yuta Fukuishi, Koshi Matsuhama, Hiroshi Tsunamoto, Hiroya Okamoto, Kotaro Higuchi, Tatsuya Kitagawa, Masakazu Shinohara, Koji Kuroda, Masamichi Iwasaki, Amane Kozuki, Junya Shite, Tomofumi Takaya, Ken-Ichi Hirata, Hiromasa Otake
{"title":"深度学习驱动的光学相干断层扫描分析用于急性冠状动脉综合征患者的心血管预后预测。","authors":"Tomoyo Hamana, Makoto Nishimori, Satoki Shibata, Hiroyuki Kawamori, Takayoshi Toba, Takashi Hiromasa, Shunsuke Kakizaki, Satoru Sasaki, Hiroyuki Fujii, Yuto Osumi, Seigo Iwane, Tetsuya Yamamoto, Shota Naniwa, Yuki Sakamoto, Yuta Fukuishi, Koshi Matsuhama, Hiroshi Tsunamoto, Hiroya Okamoto, Kotaro Higuchi, Tatsuya Kitagawa, Masakazu Shinohara, Koji Kuroda, Masamichi Iwasaki, Amane Kozuki, Junya Shite, Tomofumi Takaya, Ken-Ichi Hirata, Hiromasa Otake","doi":"10.1093/ehjdh/ztae067","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Optical coherence tomography (OCT) can identify high-risk plaques indicative of worsening prognosis in patients with acute coronary syndrome (ACS). However, manual OCT analysis has several limitations. In this study, we aim to construct a deep-learning model capable of automatically predicting ACS prognosis from patient OCT images following percutaneous coronary intervention (PCI).</p><p><strong>Methods and results: </strong>Post-PCI OCT images from 418 patients with ACS were input into a deep-learning model comprising a convolutional neural network (CNN) and transformer. The primary endpoint was target vessel failure (TVF). Model performances were evaluated using Harrell's <i>C</i>-index and compared against conventional models based on human observation of quantitative (minimum lumen area, minimum stent area, average reference lumen area, stent expansion ratio, and lesion length) and qualitative (irregular protrusion, stent thrombus, malapposition, major stent edge dissection, and thin-cap fibroatheroma) factors. GradCAM activation maps were created after extracting attention layers by using the transformer architecture. A total of 60 patients experienced TVF during follow-up (median 961 days). The <i>C</i>-index for predicting TVF was 0.796 in the deep-learning model, which was significantly higher than that of the conventional model comprising only quantitative factors (<i>C</i>-index: 0.640) and comparable to that of the conventional model, including both quantitative and qualitative factors (<i>C</i>-index: 0.789). GradCAM heat maps revealed high activation corresponding to well-known high-risk OCT features.</p><p><strong>Conclusion: </strong>The CNN and transformer-based deep-learning model enabled fully automatic prognostic prediction in patients with ACS, with a predictive ability comparable to a conventional survival model using manual human analysis.</p><p><strong>Clinical trial registration: </strong>The study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN000049237).</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 6","pages":"692-701"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome.\",\"authors\":\"Tomoyo Hamana, Makoto Nishimori, Satoki Shibata, Hiroyuki Kawamori, Takayoshi Toba, Takashi Hiromasa, Shunsuke Kakizaki, Satoru Sasaki, Hiroyuki Fujii, Yuto Osumi, Seigo Iwane, Tetsuya Yamamoto, Shota Naniwa, Yuki Sakamoto, Yuta Fukuishi, Koshi Matsuhama, Hiroshi Tsunamoto, Hiroya Okamoto, Kotaro Higuchi, Tatsuya Kitagawa, Masakazu Shinohara, Koji Kuroda, Masamichi Iwasaki, Amane Kozuki, Junya Shite, Tomofumi Takaya, Ken-Ichi Hirata, Hiromasa Otake\",\"doi\":\"10.1093/ehjdh/ztae067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Optical coherence tomography (OCT) can identify high-risk plaques indicative of worsening prognosis in patients with acute coronary syndrome (ACS). However, manual OCT analysis has several limitations. In this study, we aim to construct a deep-learning model capable of automatically predicting ACS prognosis from patient OCT images following percutaneous coronary intervention (PCI).</p><p><strong>Methods and results: </strong>Post-PCI OCT images from 418 patients with ACS were input into a deep-learning model comprising a convolutional neural network (CNN) and transformer. The primary endpoint was target vessel failure (TVF). Model performances were evaluated using Harrell's <i>C</i>-index and compared against conventional models based on human observation of quantitative (minimum lumen area, minimum stent area, average reference lumen area, stent expansion ratio, and lesion length) and qualitative (irregular protrusion, stent thrombus, malapposition, major stent edge dissection, and thin-cap fibroatheroma) factors. GradCAM activation maps were created after extracting attention layers by using the transformer architecture. A total of 60 patients experienced TVF during follow-up (median 961 days). The <i>C</i>-index for predicting TVF was 0.796 in the deep-learning model, which was significantly higher than that of the conventional model comprising only quantitative factors (<i>C</i>-index: 0.640) and comparable to that of the conventional model, including both quantitative and qualitative factors (<i>C</i>-index: 0.789). GradCAM heat maps revealed high activation corresponding to well-known high-risk OCT features.</p><p><strong>Conclusion: </strong>The CNN and transformer-based deep-learning model enabled fully automatic prognostic prediction in patients with ACS, with a predictive ability comparable to a conventional survival model using manual human analysis.</p><p><strong>Clinical trial registration: </strong>The study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN000049237).</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"5 6\",\"pages\":\"692-701\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:光学相干断层扫描(OCT)可识别急性冠状动脉综合征(ACS)患者中预后恶化的高危斑块。然而,人工 OCT 分析存在一些局限性。在这项研究中,我们旨在构建一个深度学习模型,该模型能够从经皮冠状动脉介入治疗(PCI)后患者的 OCT 图像中自动预测 ACS 的预后:418名ACS患者PCI后的OCT图像被输入到一个由卷积神经网络(CNN)和变压器组成的深度学习模型中。主要终点是靶血管失败(TVF)。使用 Harrell's C-index 对模型的性能进行了评估,并根据对定量因素(最小管腔面积、最小支架面积、平均参考管腔面积、支架膨胀率和病变长度)和定性因素(不规则突出、支架血栓、错位、主要支架边缘剥离和薄帽纤维血管瘤)的人工观察,与传统模型进行了比较。利用变压器结构提取注意层后,创建了 GradCAM 激活图。共有 60 名患者在随访期间(中位数为 961 天)出现 TVF。深度学习模型预测 TVF 的 C 指数为 0.796,显著高于仅包含定量因素的传统模型(C 指数:0.640),与包含定量和定性因素的传统模型(C 指数:0.789)相当。GradCAM 热图显示了与众所周知的高风险 OCT 特征相对应的高激活度:基于 CNN 和变压器的深度学习模型实现了对 ACS 患者的全自动预后预测,其预测能力与使用人工分析的传统生存模型相当:该研究已在大学医院医学信息网临床试验注册中心注册(UMIN000049237)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome.

Aims: Optical coherence tomography (OCT) can identify high-risk plaques indicative of worsening prognosis in patients with acute coronary syndrome (ACS). However, manual OCT analysis has several limitations. In this study, we aim to construct a deep-learning model capable of automatically predicting ACS prognosis from patient OCT images following percutaneous coronary intervention (PCI).

Methods and results: Post-PCI OCT images from 418 patients with ACS were input into a deep-learning model comprising a convolutional neural network (CNN) and transformer. The primary endpoint was target vessel failure (TVF). Model performances were evaluated using Harrell's C-index and compared against conventional models based on human observation of quantitative (minimum lumen area, minimum stent area, average reference lumen area, stent expansion ratio, and lesion length) and qualitative (irregular protrusion, stent thrombus, malapposition, major stent edge dissection, and thin-cap fibroatheroma) factors. GradCAM activation maps were created after extracting attention layers by using the transformer architecture. A total of 60 patients experienced TVF during follow-up (median 961 days). The C-index for predicting TVF was 0.796 in the deep-learning model, which was significantly higher than that of the conventional model comprising only quantitative factors (C-index: 0.640) and comparable to that of the conventional model, including both quantitative and qualitative factors (C-index: 0.789). GradCAM heat maps revealed high activation corresponding to well-known high-risk OCT features.

Conclusion: The CNN and transformer-based deep-learning model enabled fully automatic prognostic prediction in patients with ACS, with a predictive ability comparable to a conventional survival model using manual human analysis.

Clinical trial registration: The study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN000049237).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信