基于信号检测理论的新 Q 矩阵验证方法。

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jia Li, Ping Chen
{"title":"基于信号检测理论的新 Q 矩阵验证方法。","authors":"Jia Li, Ping Chen","doi":"10.1111/bmsp.12371","DOIUrl":null,"url":null,"abstract":"<p><p>The Q-matrix is a crucial component of cognitive diagnostic theory and an important basis for the research and practical application of cognitive diagnosis. In practice, the Q-matrix is typically developed by domain experts and may contain some misspecifications, so it needs to be refined using Q-matrix validation methods. Based on signal detection theory, this paper puts forward a new Q-matrix validation method (i.e., <math> <semantics><mrow><mi>β</mi></mrow> <annotation>$$ \\beta $$</annotation></semantics> </math> method) and then conducts a simulation study to compare the new method with existing methods. The results show that when the model is DINA (deterministic inputs, noisy 'and' gate), the <math> <semantics><mrow><mi>β</mi></mrow> <annotation>$$ \\beta $$</annotation></semantics> </math> method outperforms the existing methods under all conditions; under the generalized DINA (G-DINA) model, the method still has the highest validation rate when the sample size is small, and the item quality is high or the rate of Q-matrix misspecification is ≥.4. Finally, a sub-dataset of the PISA 2000 reading assessment is analysed to evaluate the reliability of the <math> <semantics><mrow><mi>β</mi></mrow> <annotation>$$ \\beta $$</annotation></semantics> </math> method.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new Q-matrix validation method based on signal detection theory.\",\"authors\":\"Jia Li, Ping Chen\",\"doi\":\"10.1111/bmsp.12371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Q-matrix is a crucial component of cognitive diagnostic theory and an important basis for the research and practical application of cognitive diagnosis. In practice, the Q-matrix is typically developed by domain experts and may contain some misspecifications, so it needs to be refined using Q-matrix validation methods. Based on signal detection theory, this paper puts forward a new Q-matrix validation method (i.e., <math> <semantics><mrow><mi>β</mi></mrow> <annotation>$$ \\\\beta $$</annotation></semantics> </math> method) and then conducts a simulation study to compare the new method with existing methods. The results show that when the model is DINA (deterministic inputs, noisy 'and' gate), the <math> <semantics><mrow><mi>β</mi></mrow> <annotation>$$ \\\\beta $$</annotation></semantics> </math> method outperforms the existing methods under all conditions; under the generalized DINA (G-DINA) model, the method still has the highest validation rate when the sample size is small, and the item quality is high or the rate of Q-matrix misspecification is ≥.4. Finally, a sub-dataset of the PISA 2000 reading assessment is analysed to evaluate the reliability of the <math> <semantics><mrow><mi>β</mi></mrow> <annotation>$$ \\\\beta $$</annotation></semantics> </math> method.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12371\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12371","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

Q 矩阵是认知诊断理论的重要组成部分,也是认知诊断研究和实际应用的重要基础。在实际应用中,Q 矩阵通常由领域专家开发,可能包含一些错误的规范,因此需要使用 Q 矩阵验证方法对其进行完善。本文基于信号检测理论,提出了一种新的 Q 矩阵验证方法(即 β $$ \beta $$ 方法),并进行了仿真研究,将新方法与现有方法进行比较。结果表明,当模型为 DINA(确定性输入、噪声 "和 "门)时,β $ $ \beta $ $ 方法在所有条件下都优于现有方法;在广义 DINA(G-DINA)模型下,当样本量较小、项目质量较高或 Q 矩阵错误率≥.4 时,该方法仍具有最高的验证率。最后,分析了 PISA 2000 阅读评估的子数据集,以评估 β $$ \beta $$ 方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new Q-matrix validation method based on signal detection theory.

The Q-matrix is a crucial component of cognitive diagnostic theory and an important basis for the research and practical application of cognitive diagnosis. In practice, the Q-matrix is typically developed by domain experts and may contain some misspecifications, so it needs to be refined using Q-matrix validation methods. Based on signal detection theory, this paper puts forward a new Q-matrix validation method (i.e., β $$ \beta $$ method) and then conducts a simulation study to compare the new method with existing methods. The results show that when the model is DINA (deterministic inputs, noisy 'and' gate), the β $$ \beta $$ method outperforms the existing methods under all conditions; under the generalized DINA (G-DINA) model, the method still has the highest validation rate when the sample size is small, and the item quality is high or the rate of Q-matrix misspecification is ≥.4. Finally, a sub-dataset of the PISA 2000 reading assessment is analysed to evaluate the reliability of the β $$ \beta $$ method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信