Dongyang Liu , Qiujing Yan , Xiaochun Qin , Lijin Tian
{"title":"青苔Physcomitrella patens的PSI-LHCI超级复合物的超快动力学。","authors":"Dongyang Liu , Qiujing Yan , Xiaochun Qin , Lijin Tian","doi":"10.1016/j.bbabio.2024.149526","DOIUrl":null,"url":null,"abstract":"<div><div>Photosystem I (PSI) is a large membrane photosynthetic complex that harvests sunlight and drives photosynthetic electron transport. In both green algae and higher plants, PSI's ultrafast energy transfer and charge separation kinetics have been characterized. In contrast, it is not yet clear in <em>Physcomitrella patens</em>, even though moss is one of the earliest land plants and represents a critical stage in plant evolution. Here, we measured the time-resolved fluorescence of purified <em>Pp</em> PSI-LHCI at both room temperature (RT) and 77 K. Compared to the PSI kinetics of <em>Arabidopsis thaliana</em> at RT, we found that although the overall trapping time of <em>Pp</em> PSI-LHCI is nearly identical, ∼46 ps, their lifetimes at different wavelength regions differ. Specifically, <em>Pp</em> PSI-LHCI is slower in energy trapping below 720 nm but faster beyond. The slow-down of energy transfer between bulk chlorophylls (Chls, <720 nm) in <em>Pp</em> PSI-LHCI is probably because of the larger spatial gap between the PSI core and LHCI belt, and the acceleration of trapping at longer wavelength is most likely due to the lack of low-energy red-shifted Chls (red Chls). Indeed, time-resolved fluorescence results at 77 K revealed only three types of red Chls of 702 nm, 712 nm, and 720 nm in <em>Pp</em> PSI-LHCI but failed to detect the red Chls of 735 nm that present in LHCI in higher plants. Finally, we briefly discussed the evolutionary adaptations of PSI-LHCI in the context of red Chls from green algae to mosses and to land plants.</div></div>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 1","pages":"Article 149526"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast kinetics of PSI-LHCI super-complex from the moss Physcomitrella patens\",\"authors\":\"Dongyang Liu , Qiujing Yan , Xiaochun Qin , Lijin Tian\",\"doi\":\"10.1016/j.bbabio.2024.149526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photosystem I (PSI) is a large membrane photosynthetic complex that harvests sunlight and drives photosynthetic electron transport. In both green algae and higher plants, PSI's ultrafast energy transfer and charge separation kinetics have been characterized. In contrast, it is not yet clear in <em>Physcomitrella patens</em>, even though moss is one of the earliest land plants and represents a critical stage in plant evolution. Here, we measured the time-resolved fluorescence of purified <em>Pp</em> PSI-LHCI at both room temperature (RT) and 77 K. Compared to the PSI kinetics of <em>Arabidopsis thaliana</em> at RT, we found that although the overall trapping time of <em>Pp</em> PSI-LHCI is nearly identical, ∼46 ps, their lifetimes at different wavelength regions differ. Specifically, <em>Pp</em> PSI-LHCI is slower in energy trapping below 720 nm but faster beyond. The slow-down of energy transfer between bulk chlorophylls (Chls, <720 nm) in <em>Pp</em> PSI-LHCI is probably because of the larger spatial gap between the PSI core and LHCI belt, and the acceleration of trapping at longer wavelength is most likely due to the lack of low-energy red-shifted Chls (red Chls). Indeed, time-resolved fluorescence results at 77 K revealed only three types of red Chls of 702 nm, 712 nm, and 720 nm in <em>Pp</em> PSI-LHCI but failed to detect the red Chls of 735 nm that present in LHCI in higher plants. Finally, we briefly discussed the evolutionary adaptations of PSI-LHCI in the context of red Chls from green algae to mosses and to land plants.</div></div>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\"1866 1\",\"pages\":\"Article 149526\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005272824004961\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004961","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ultrafast kinetics of PSI-LHCI super-complex from the moss Physcomitrella patens
Photosystem I (PSI) is a large membrane photosynthetic complex that harvests sunlight and drives photosynthetic electron transport. In both green algae and higher plants, PSI's ultrafast energy transfer and charge separation kinetics have been characterized. In contrast, it is not yet clear in Physcomitrella patens, even though moss is one of the earliest land plants and represents a critical stage in plant evolution. Here, we measured the time-resolved fluorescence of purified Pp PSI-LHCI at both room temperature (RT) and 77 K. Compared to the PSI kinetics of Arabidopsis thaliana at RT, we found that although the overall trapping time of Pp PSI-LHCI is nearly identical, ∼46 ps, their lifetimes at different wavelength regions differ. Specifically, Pp PSI-LHCI is slower in energy trapping below 720 nm but faster beyond. The slow-down of energy transfer between bulk chlorophylls (Chls, <720 nm) in Pp PSI-LHCI is probably because of the larger spatial gap between the PSI core and LHCI belt, and the acceleration of trapping at longer wavelength is most likely due to the lack of low-energy red-shifted Chls (red Chls). Indeed, time-resolved fluorescence results at 77 K revealed only three types of red Chls of 702 nm, 712 nm, and 720 nm in Pp PSI-LHCI but failed to detect the red Chls of 735 nm that present in LHCI in higher plants. Finally, we briefly discussed the evolutionary adaptations of PSI-LHCI in the context of red Chls from green algae to mosses and to land plants.
期刊介绍:
BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.