Glun2A的突触整合和突触可塑性需要含Glun2B的NMDARS的活动依赖性内化

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Granville P Storey, Raul Riquelme, Andres Barria
{"title":"Glun2A的突触整合和突触可塑性需要含Glun2B的NMDARS的活动依赖性内化","authors":"Granville P Storey, Raul Riquelme, Andres Barria","doi":"10.1523/JNEUROSCI.0823-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>NMDA-type glutamate receptors are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The precise composition of the GluN2 subunits determines the channel's biophysical properties and influences its interaction with postsynaptic scaffolding proteins and signaling molecules involved in synaptic physiology and plasticity. The precise regulation of NMDAR subunit composition at synapses is crucial for proper synaptogenesis, neuronal circuit development, and synaptic plasticity, a cellular model of memory formation.In the forebrain during early development, NMDARs contain solely the GluN2B subunit, which is necessary for proper synaptogenesis and synaptic plasticity. In rodents, GluN2A subunit expression begins in the second postnatal week, replacing GluN2B-containing NMDARs at synapses in an activity- or sensory experience-dependent process. This switch in NMDAR subunit composition at synapses alters channel properties and reduces synaptic plasticity. The molecular mechanism regulating the switch remains unclear.We have investigated the role of activity-dependent internalization of GluN2B-containing receptors in shaping synaptic NMDAR subunit composition. Using molecular, pharmacological, and electrophysiological approaches in cultured organotypic hippocampal slices from rats of both sexes, we show that the process of incorporating GluN2A-containing NMDARs receptors requires activity-dependent internalization of GluN2B-containing NMDARs. Interestingly, blockade of GluN2A synaptic incorporation was associated with impaired potentiation of AMPA-mediated synaptic transmission, suggesting a potential coupling between the trafficking of AMPARs into synapses and that of GluN2A-containing NMDARs.These insights contribute to our understanding of the molecular mechanisms underlying synaptic trafficking of glutamate receptors and synaptic plasticity. They may also have implications for therapeutic strategies targeting NMDAR function in neurological disorders.<b>Significance statement</b> NMDARs play a critical role in synaptogenesis, synaptic stability, and activity-dependent regulation of synaptic strength. The developmental switch in their GluN2 subunits composition is part of normal synapse development and crucial for proper synaptic physiology, plasticity, and the formation of functional neuronal circuits, though the mechanisms governing it remain unclear. We show that internalization of GluN2B-containing NMDARs is required for synaptic incorporation of GluN2A-containing receptors. This process can be induced by long-term potentiation and requires Ca<sup>+2</sup> Notably, GluN2A trafficking to synapses is linked to the incorporation of AMPA-type glutamate receptors, suggesting a shared pathway for synaptic incorporation. These findings provide greater insight into the molecular mechanisms behind glutamate receptor trafficking and synaptic plasticity, potentially informing therapeutic strategies for neurological disorders.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activity-Dependent Internalization of Glun2B-Containing NMDARS Is Required For Synaptic Incorporation of Glun2A And Synaptic Plasticity.\",\"authors\":\"Granville P Storey, Raul Riquelme, Andres Barria\",\"doi\":\"10.1523/JNEUROSCI.0823-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NMDA-type glutamate receptors are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The precise composition of the GluN2 subunits determines the channel's biophysical properties and influences its interaction with postsynaptic scaffolding proteins and signaling molecules involved in synaptic physiology and plasticity. The precise regulation of NMDAR subunit composition at synapses is crucial for proper synaptogenesis, neuronal circuit development, and synaptic plasticity, a cellular model of memory formation.In the forebrain during early development, NMDARs contain solely the GluN2B subunit, which is necessary for proper synaptogenesis and synaptic plasticity. In rodents, GluN2A subunit expression begins in the second postnatal week, replacing GluN2B-containing NMDARs at synapses in an activity- or sensory experience-dependent process. This switch in NMDAR subunit composition at synapses alters channel properties and reduces synaptic plasticity. The molecular mechanism regulating the switch remains unclear.We have investigated the role of activity-dependent internalization of GluN2B-containing receptors in shaping synaptic NMDAR subunit composition. Using molecular, pharmacological, and electrophysiological approaches in cultured organotypic hippocampal slices from rats of both sexes, we show that the process of incorporating GluN2A-containing NMDARs receptors requires activity-dependent internalization of GluN2B-containing NMDARs. Interestingly, blockade of GluN2A synaptic incorporation was associated with impaired potentiation of AMPA-mediated synaptic transmission, suggesting a potential coupling between the trafficking of AMPARs into synapses and that of GluN2A-containing NMDARs.These insights contribute to our understanding of the molecular mechanisms underlying synaptic trafficking of glutamate receptors and synaptic plasticity. They may also have implications for therapeutic strategies targeting NMDAR function in neurological disorders.<b>Significance statement</b> NMDARs play a critical role in synaptogenesis, synaptic stability, and activity-dependent regulation of synaptic strength. The developmental switch in their GluN2 subunits composition is part of normal synapse development and crucial for proper synaptic physiology, plasticity, and the formation of functional neuronal circuits, though the mechanisms governing it remain unclear. We show that internalization of GluN2B-containing NMDARs is required for synaptic incorporation of GluN2A-containing receptors. This process can be induced by long-term potentiation and requires Ca<sup>+2</sup> Notably, GluN2A trafficking to synapses is linked to the incorporation of AMPA-type glutamate receptors, suggesting a shared pathway for synaptic incorporation. These findings provide greater insight into the molecular mechanisms behind glutamate receptor trafficking and synaptic plasticity, potentially informing therapeutic strategies for neurological disorders.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0823-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0823-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

NMDA 型谷氨酸受体是由两个 GluN1 和两个 GluN2 亚基组成的异源四聚体复合物。GluN2 亚基的精确组成决定了通道的生物物理特性,并影响其与突触后支架蛋白和涉及突触生理和可塑性的信号分子的相互作用。在前脑的早期发育过程中,NMDARs 只含有 GluN2B 亚基,这是正常突触发生和突触可塑性所必需的。在啮齿类动物中,GluN2A 亚基的表达始于出生后第二周,在一个依赖于活动或感觉经验的过程中取代突触中含有 GluN2B 的 NMDAR。突触处 NMDAR 亚基组成的这种转换改变了通道特性,降低了突触可塑性。我们研究了含 GluN2B 受体的活动依赖性内化在形成突触 NMDAR 亚基组成中的作用。利用分子、药理学和电生理学方法,我们在培养的雌雄大鼠海马组织切片中发现,含 GluN2A 的 NMDARs 受体的整合过程需要含 GluN2B 的 NMDARs 的活动依赖性内化。有趣的是,阻断 GluN2A 突触结合与 AMPA 介导的突触传递的增效作用受损有关,这表明 AMPARs 向突触的贩运与含 GluN2A 的 NMDARs 的贩运之间存在潜在的耦合。这些见解有助于我们了解谷氨酸受体的突触贩运和突触可塑性的分子机制,也可能对针对神经系统疾病中 NMDAR 功能的治疗策略产生影响。其 GluN2 亚基组成的发育转换是正常突触发育的一部分,对正常的突触生理学、可塑性和功能性神经元回路的形成至关重要,但其支配机制仍不清楚。我们的研究表明,含 GluN2B 的 NMDARs 的内化是含 GluN2A 的受体突触结合所必需的。值得注意的是,GluN2A 向突触的迁移与 AMPA 型谷氨酸受体的结合有关,这表明突触结合有一个共同的途径。这些发现使人们对谷氨酸受体迁移和突触可塑性背后的分子机制有了更深入的了解,有可能为神经系统疾病的治疗策略提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity-Dependent Internalization of Glun2B-Containing NMDARS Is Required For Synaptic Incorporation of Glun2A And Synaptic Plasticity.

NMDA-type glutamate receptors are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The precise composition of the GluN2 subunits determines the channel's biophysical properties and influences its interaction with postsynaptic scaffolding proteins and signaling molecules involved in synaptic physiology and plasticity. The precise regulation of NMDAR subunit composition at synapses is crucial for proper synaptogenesis, neuronal circuit development, and synaptic plasticity, a cellular model of memory formation.In the forebrain during early development, NMDARs contain solely the GluN2B subunit, which is necessary for proper synaptogenesis and synaptic plasticity. In rodents, GluN2A subunit expression begins in the second postnatal week, replacing GluN2B-containing NMDARs at synapses in an activity- or sensory experience-dependent process. This switch in NMDAR subunit composition at synapses alters channel properties and reduces synaptic plasticity. The molecular mechanism regulating the switch remains unclear.We have investigated the role of activity-dependent internalization of GluN2B-containing receptors in shaping synaptic NMDAR subunit composition. Using molecular, pharmacological, and electrophysiological approaches in cultured organotypic hippocampal slices from rats of both sexes, we show that the process of incorporating GluN2A-containing NMDARs receptors requires activity-dependent internalization of GluN2B-containing NMDARs. Interestingly, blockade of GluN2A synaptic incorporation was associated with impaired potentiation of AMPA-mediated synaptic transmission, suggesting a potential coupling between the trafficking of AMPARs into synapses and that of GluN2A-containing NMDARs.These insights contribute to our understanding of the molecular mechanisms underlying synaptic trafficking of glutamate receptors and synaptic plasticity. They may also have implications for therapeutic strategies targeting NMDAR function in neurological disorders.Significance statement NMDARs play a critical role in synaptogenesis, synaptic stability, and activity-dependent regulation of synaptic strength. The developmental switch in their GluN2 subunits composition is part of normal synapse development and crucial for proper synaptic physiology, plasticity, and the formation of functional neuronal circuits, though the mechanisms governing it remain unclear. We show that internalization of GluN2B-containing NMDARs is required for synaptic incorporation of GluN2A-containing receptors. This process can be induced by long-term potentiation and requires Ca+2 Notably, GluN2A trafficking to synapses is linked to the incorporation of AMPA-type glutamate receptors, suggesting a shared pathway for synaptic incorporation. These findings provide greater insight into the molecular mechanisms behind glutamate receptor trafficking and synaptic plasticity, potentially informing therapeutic strategies for neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信