传感器增益衰减情况下电力系统动态同步的鲁棒估计方法。

Yi Wang, Jiawei Zhang, Yaoqiang Wang, Zhongwen Li, Kewen Wang, Jun Liang
{"title":"传感器增益衰减情况下电力系统动态同步的鲁棒估计方法。","authors":"Yi Wang, Jiawei Zhang, Yaoqiang Wang, Zhongwen Li, Kewen Wang, Jun Liang","doi":"10.1016/j.isatra.2024.10.031","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and accurate real-time estimation of power system synchronization is quite important for its safety control and operation. However, signal sensing failure, electromagnetic interference, system delay, etc., will cause the sensor gain degradation. To furnish a dependable method for dynamic estimation in power grid synchronization amid sensor gain degradation, this research presents a robust estimation system capable of monitoring and tracking the frequency, voltage phase angles, and magnitudes. Firstly, the random degradation of measurement data is characterized by a discrete distribution within the range [0,1]. Secondly, the state space model of sensor gain degradation is established. Subsequently, a novel modified fault-tolerant extended Kalman filter (MFTEKF) is developed under the recursive estimator framework. Finally, extensive experimental results definitively demonstrate that the proposed MFTEKF can accurately monitor the dynamic characteristics of the power grid.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimation method for power system dynamic synchronization with sensor gain degradation.\",\"authors\":\"Yi Wang, Jiawei Zhang, Yaoqiang Wang, Zhongwen Li, Kewen Wang, Jun Liang\",\"doi\":\"10.1016/j.isatra.2024.10.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient and accurate real-time estimation of power system synchronization is quite important for its safety control and operation. However, signal sensing failure, electromagnetic interference, system delay, etc., will cause the sensor gain degradation. To furnish a dependable method for dynamic estimation in power grid synchronization amid sensor gain degradation, this research presents a robust estimation system capable of monitoring and tracking the frequency, voltage phase angles, and magnitudes. Firstly, the random degradation of measurement data is characterized by a discrete distribution within the range [0,1]. Secondly, the state space model of sensor gain degradation is established. Subsequently, a novel modified fault-tolerant extended Kalman filter (MFTEKF) is developed under the recursive estimator framework. Finally, extensive experimental results definitively demonstrate that the proposed MFTEKF can accurately monitor the dynamic characteristics of the power grid.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.10.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.10.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效、准确的电力系统同步实时估算对于电力系统的安全控制和运行相当重要。然而,信号传感故障、电磁干扰、系统延迟等都会导致传感器增益衰减。为了在传感器增益衰减的情况下提供可靠的电网同步动态估算方法,本研究提出了一种能够监测和跟踪频率、电压相位角和幅值的鲁棒估算系统。首先,测量数据的随机衰减以 [0,1] 范围内的离散分布为特征。其次,建立传感器增益衰减的状态空间模型。随后,在递归估计器框架下开发了一种新颖的改进型容错扩展卡尔曼滤波器(MFTEKF)。最后,大量实验结果明确表明,所提出的 MFTEKF 能够准确监测电网的动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust estimation method for power system dynamic synchronization with sensor gain degradation.

Efficient and accurate real-time estimation of power system synchronization is quite important for its safety control and operation. However, signal sensing failure, electromagnetic interference, system delay, etc., will cause the sensor gain degradation. To furnish a dependable method for dynamic estimation in power grid synchronization amid sensor gain degradation, this research presents a robust estimation system capable of monitoring and tracking the frequency, voltage phase angles, and magnitudes. Firstly, the random degradation of measurement data is characterized by a discrete distribution within the range [0,1]. Secondly, the state space model of sensor gain degradation is established. Subsequently, a novel modified fault-tolerant extended Kalman filter (MFTEKF) is developed under the recursive estimator framework. Finally, extensive experimental results definitively demonstrate that the proposed MFTEKF can accurately monitor the dynamic characteristics of the power grid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信