Lanxin Ji, Iris Menu, Amyn Majbri, Tanya Bhatia, Christopher J Trentacosta, Moriah E Thomason
{"title":"跨越出生过渡期的人脑功能连接组成熟轨迹。","authors":"Lanxin Ji, Iris Menu, Amyn Majbri, Tanya Bhatia, Christopher J Trentacosta, Moriah E Thomason","doi":"10.1371/journal.pbio.3002909","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the sequence and timing of brain functional network development at the beginning of human life is critically important from both normative and clinical perspectives. Yet, we presently lack rigorous examination of the longitudinal emergence of human brain functional networks over the birth transition. Leveraging a large, longitudinal perinatal functional magnetic resonance imaging (fMRI) data set, this study models developmental trajectories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational age (GA). The final sample includes 126 fetal scans (GA = 31.36 ± 3.83 weeks) and 58 infant scans (GA = 48.17 ± 3.73 weeks) from 140 unique subjects. In this study, we document the developmental changes of resting-state functional connectivity (RSFC) over the birth transition, evident at both network and graph levels. We observe that growth patterns are regionally specific, with some areas showing minimal RSFC changes, while others exhibit a dramatic increase at birth. Examples with birth-triggered dramatic change include RSFC within the subcortical network, within the superior frontal network, within the occipital-cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral sensorimotor networks and between the bilateral temporal network. Our graph analysis further emphasized the subcortical network as the only region of the brain exhibiting a significant increase in local efficiency around birth, while a concomitant gradual increase was found in global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal period. This work unveils fundamental aspects of early brain development and lays the foundation for future work on the influence of environmental factors on this process.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002909"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectories of human brain functional connectome maturation across the birth transition.\",\"authors\":\"Lanxin Ji, Iris Menu, Amyn Majbri, Tanya Bhatia, Christopher J Trentacosta, Moriah E Thomason\",\"doi\":\"10.1371/journal.pbio.3002909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the sequence and timing of brain functional network development at the beginning of human life is critically important from both normative and clinical perspectives. Yet, we presently lack rigorous examination of the longitudinal emergence of human brain functional networks over the birth transition. Leveraging a large, longitudinal perinatal functional magnetic resonance imaging (fMRI) data set, this study models developmental trajectories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational age (GA). The final sample includes 126 fetal scans (GA = 31.36 ± 3.83 weeks) and 58 infant scans (GA = 48.17 ± 3.73 weeks) from 140 unique subjects. In this study, we document the developmental changes of resting-state functional connectivity (RSFC) over the birth transition, evident at both network and graph levels. We observe that growth patterns are regionally specific, with some areas showing minimal RSFC changes, while others exhibit a dramatic increase at birth. Examples with birth-triggered dramatic change include RSFC within the subcortical network, within the superior frontal network, within the occipital-cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral sensorimotor networks and between the bilateral temporal network. Our graph analysis further emphasized the subcortical network as the only region of the brain exhibiting a significant increase in local efficiency around birth, while a concomitant gradual increase was found in global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal period. This work unveils fundamental aspects of early brain development and lays the foundation for future work on the influence of environmental factors on this process.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 11\",\"pages\":\"e3002909\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002909\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002909","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Trajectories of human brain functional connectome maturation across the birth transition.
Understanding the sequence and timing of brain functional network development at the beginning of human life is critically important from both normative and clinical perspectives. Yet, we presently lack rigorous examination of the longitudinal emergence of human brain functional networks over the birth transition. Leveraging a large, longitudinal perinatal functional magnetic resonance imaging (fMRI) data set, this study models developmental trajectories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational age (GA). The final sample includes 126 fetal scans (GA = 31.36 ± 3.83 weeks) and 58 infant scans (GA = 48.17 ± 3.73 weeks) from 140 unique subjects. In this study, we document the developmental changes of resting-state functional connectivity (RSFC) over the birth transition, evident at both network and graph levels. We observe that growth patterns are regionally specific, with some areas showing minimal RSFC changes, while others exhibit a dramatic increase at birth. Examples with birth-triggered dramatic change include RSFC within the subcortical network, within the superior frontal network, within the occipital-cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral sensorimotor networks and between the bilateral temporal network. Our graph analysis further emphasized the subcortical network as the only region of the brain exhibiting a significant increase in local efficiency around birth, while a concomitant gradual increase was found in global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal period. This work unveils fundamental aspects of early brain development and lays the foundation for future work on the influence of environmental factors on this process.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.