{"title":"质子传导氧化物的新兴计算和机器学习方法:材料发现和基础理解。","authors":"Susumu Fujii, Junji Hyodo, Kazuki Shitara, Akihide Kuwabara, Shusuke Kasamatsu, Yoshihiro Yamazaki","doi":"10.1080/14686996.2024.2416383","DOIUrl":null,"url":null,"abstract":"<p><p>This review presents computational and machine learning methodologies developed during a 5-year research project on proton-conducting oxides. The main goal was to develop methodologies that could assist in materials discovery or provide new insights into complex proton-conducting oxides. Through these methodologies, three new proton-conducting oxides, including both perovskite and non-perovskites, have been discovered. In terms of gaining insights, octahedral tilt/distortions and oxygen affinity are found to play a critical role in determining proton diffusivities and conductivities in doped barium zirconates. Replica exchange Monte Carlo approach has enabled to reveal realistic defect configurations, hydration behavior, and their temperature dependence in oxides. Our approach 'Materials discovery through interpretation', which integrates new insights or tendencies obtained from computations and experiments to sequential explorations of materials, has also identified perovskites that exhibit proton conductivity exceeding 0.01 S/cm and high chemical stability at 300 <math><mi> </mi> <mo>∘</mo></math> C.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2416383"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575695/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging computational and machine learning methodologies for proton-conducting oxides: materials discovery and fundamental understanding.\",\"authors\":\"Susumu Fujii, Junji Hyodo, Kazuki Shitara, Akihide Kuwabara, Shusuke Kasamatsu, Yoshihiro Yamazaki\",\"doi\":\"10.1080/14686996.2024.2416383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review presents computational and machine learning methodologies developed during a 5-year research project on proton-conducting oxides. The main goal was to develop methodologies that could assist in materials discovery or provide new insights into complex proton-conducting oxides. Through these methodologies, three new proton-conducting oxides, including both perovskite and non-perovskites, have been discovered. In terms of gaining insights, octahedral tilt/distortions and oxygen affinity are found to play a critical role in determining proton diffusivities and conductivities in doped barium zirconates. Replica exchange Monte Carlo approach has enabled to reveal realistic defect configurations, hydration behavior, and their temperature dependence in oxides. Our approach 'Materials discovery through interpretation', which integrates new insights or tendencies obtained from computations and experiments to sequential explorations of materials, has also identified perovskites that exhibit proton conductivity exceeding 0.01 S/cm and high chemical stability at 300 <math><mi> </mi> <mo>∘</mo></math> C.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2416383\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2416383\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2416383","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Emerging computational and machine learning methodologies for proton-conducting oxides: materials discovery and fundamental understanding.
This review presents computational and machine learning methodologies developed during a 5-year research project on proton-conducting oxides. The main goal was to develop methodologies that could assist in materials discovery or provide new insights into complex proton-conducting oxides. Through these methodologies, three new proton-conducting oxides, including both perovskite and non-perovskites, have been discovered. In terms of gaining insights, octahedral tilt/distortions and oxygen affinity are found to play a critical role in determining proton diffusivities and conductivities in doped barium zirconates. Replica exchange Monte Carlo approach has enabled to reveal realistic defect configurations, hydration behavior, and their temperature dependence in oxides. Our approach 'Materials discovery through interpretation', which integrates new insights or tendencies obtained from computations and experiments to sequential explorations of materials, has also identified perovskites that exhibit proton conductivity exceeding 0.01 S/cm and high chemical stability at 300 C.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.