Isaac Doughan, Atri Halder, Igor Reduto, Matias Koivurova, Timo Aalto, Matthieu Roussey, Jari Turunen
{"title":"根据复电场确定通道波导中的模式强度","authors":"Isaac Doughan, Atri Halder, Igor Reduto, Matias Koivurova, Timo Aalto, Matthieu Roussey, Jari Turunen","doi":"10.1038/s41598-024-80054-5","DOIUrl":null,"url":null,"abstract":"<p><p>We show that the mode strengths of a guided field in an arbitrary asymmetric channel waveguide can be uniquely determined from self-referencing interferometric measurements at the exit plane of the waveguide. This requires knowledge of both the amplitude and phase of the complex electric field distribution. Although the amplitude can be obtained from the measured intensity profile easily, the phase retrieval is usually non-trivial. We develop an innovative, alternative and promising technique, where the complex cross-spectral density (CSD) function is measured using a customized wavefront folding interferometer. We then construct the total electric field (complex valued), from which we can determine the strengths of the allowed modes for an asymmetric strip waveguide. Our retrieval algorithm also provides the phase information (intermodal dispersion) associated with each mode, directly from the measured electric field distribution. Moreover, we experimentally demonstrate the developed scheme for different in-coupling (butt-coupling) conditions, resulting in different modal strength distributions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28665"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576979/pdf/","citationCount":"0","resultStr":"{\"title\":\"Determination of mode strengths in channel waveguide from the complex electric field.\",\"authors\":\"Isaac Doughan, Atri Halder, Igor Reduto, Matias Koivurova, Timo Aalto, Matthieu Roussey, Jari Turunen\",\"doi\":\"10.1038/s41598-024-80054-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We show that the mode strengths of a guided field in an arbitrary asymmetric channel waveguide can be uniquely determined from self-referencing interferometric measurements at the exit plane of the waveguide. This requires knowledge of both the amplitude and phase of the complex electric field distribution. Although the amplitude can be obtained from the measured intensity profile easily, the phase retrieval is usually non-trivial. We develop an innovative, alternative and promising technique, where the complex cross-spectral density (CSD) function is measured using a customized wavefront folding interferometer. We then construct the total electric field (complex valued), from which we can determine the strengths of the allowed modes for an asymmetric strip waveguide. Our retrieval algorithm also provides the phase information (intermodal dispersion) associated with each mode, directly from the measured electric field distribution. Moreover, we experimentally demonstrate the developed scheme for different in-coupling (butt-coupling) conditions, resulting in different modal strength distributions.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"28665\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576979/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-80054-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80054-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Determination of mode strengths in channel waveguide from the complex electric field.
We show that the mode strengths of a guided field in an arbitrary asymmetric channel waveguide can be uniquely determined from self-referencing interferometric measurements at the exit plane of the waveguide. This requires knowledge of both the amplitude and phase of the complex electric field distribution. Although the amplitude can be obtained from the measured intensity profile easily, the phase retrieval is usually non-trivial. We develop an innovative, alternative and promising technique, where the complex cross-spectral density (CSD) function is measured using a customized wavefront folding interferometer. We then construct the total electric field (complex valued), from which we can determine the strengths of the allowed modes for an asymmetric strip waveguide. Our retrieval algorithm also provides the phase information (intermodal dispersion) associated with each mode, directly from the measured electric field distribution. Moreover, we experimentally demonstrate the developed scheme for different in-coupling (butt-coupling) conditions, resulting in different modal strength distributions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.