{"title":"环境因素和潜在的益生菌系形成了与健康的青花鱼幼体及其饲养水相关的活性原核生物群落。","authors":"Carolane Giraud, Nelly Wabete, Célia Lemeu, Nazha Selmaoui-Folcher, Dominique Pham, Viviane Boulo, Nolwenn Callac","doi":"10.1093/femsec/fiae156","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial dysbiosis is hypothesized to cause larval mass mortalities in New-Caledonian shrimp hatcheries. In order to confirm this hypothesis and allow further microbial comparisons, we studied the active prokaryotic communities of healthy Penaeus stylirostris larvae and their surrounding environment during the first 10 days of larval rearing. Using daily nutrient concentration quantitative analyses and spectrophotometric organic matter analyses, we highlighted a global eutrophication of the rearing environment. We also evidenced drastic bacterial community modifications in the water and the larvae samples using Illumina HiSeq sequencing of the V4 region of the 16S rRNA gene. We confirmed that Alteromonadales, Rhodobacterales, Flavobacteriales, Oceanospirillales and Vibrionales members formed the core bacteriota of shrimp larvae. We also identified, in the water and the larvae samples, several potential probiotic bacterial strains which could lead to rethink probiotic use in aquaculture (AEGEAN 169 marine group, OM27 clade, Ruegeria, Leisingera, Pseudoalteromonas and Roseobacter). Finally, investigating the existing correlations between the environmental factors and the major bacterial taxa of the water and the larvae samples, we suggested that deterministic and stochastic processes were involved in the assembly of prokaryotic communities during the larval rearing of P. stylirostris. Overall, our results showed that drastic changes mostly occurred during the zoea stages suggesting that this larval phase is crucial during shrimp larval development.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental factors and potential probiotic lineages shape the active prokaryotic communities associated with healthy Penaeus stylirostris larvae and their rearing water.\",\"authors\":\"Carolane Giraud, Nelly Wabete, Célia Lemeu, Nazha Selmaoui-Folcher, Dominique Pham, Viviane Boulo, Nolwenn Callac\",\"doi\":\"10.1093/femsec/fiae156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial dysbiosis is hypothesized to cause larval mass mortalities in New-Caledonian shrimp hatcheries. In order to confirm this hypothesis and allow further microbial comparisons, we studied the active prokaryotic communities of healthy Penaeus stylirostris larvae and their surrounding environment during the first 10 days of larval rearing. Using daily nutrient concentration quantitative analyses and spectrophotometric organic matter analyses, we highlighted a global eutrophication of the rearing environment. We also evidenced drastic bacterial community modifications in the water and the larvae samples using Illumina HiSeq sequencing of the V4 region of the 16S rRNA gene. We confirmed that Alteromonadales, Rhodobacterales, Flavobacteriales, Oceanospirillales and Vibrionales members formed the core bacteriota of shrimp larvae. We also identified, in the water and the larvae samples, several potential probiotic bacterial strains which could lead to rethink probiotic use in aquaculture (AEGEAN 169 marine group, OM27 clade, Ruegeria, Leisingera, Pseudoalteromonas and Roseobacter). Finally, investigating the existing correlations between the environmental factors and the major bacterial taxa of the water and the larvae samples, we suggested that deterministic and stochastic processes were involved in the assembly of prokaryotic communities during the larval rearing of P. stylirostris. Overall, our results showed that drastic changes mostly occurred during the zoea stages suggesting that this larval phase is crucial during shrimp larval development.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae156\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Environmental factors and potential probiotic lineages shape the active prokaryotic communities associated with healthy Penaeus stylirostris larvae and their rearing water.
Microbial dysbiosis is hypothesized to cause larval mass mortalities in New-Caledonian shrimp hatcheries. In order to confirm this hypothesis and allow further microbial comparisons, we studied the active prokaryotic communities of healthy Penaeus stylirostris larvae and their surrounding environment during the first 10 days of larval rearing. Using daily nutrient concentration quantitative analyses and spectrophotometric organic matter analyses, we highlighted a global eutrophication of the rearing environment. We also evidenced drastic bacterial community modifications in the water and the larvae samples using Illumina HiSeq sequencing of the V4 region of the 16S rRNA gene. We confirmed that Alteromonadales, Rhodobacterales, Flavobacteriales, Oceanospirillales and Vibrionales members formed the core bacteriota of shrimp larvae. We also identified, in the water and the larvae samples, several potential probiotic bacterial strains which could lead to rethink probiotic use in aquaculture (AEGEAN 169 marine group, OM27 clade, Ruegeria, Leisingera, Pseudoalteromonas and Roseobacter). Finally, investigating the existing correlations between the environmental factors and the major bacterial taxa of the water and the larvae samples, we suggested that deterministic and stochastic processes were involved in the assembly of prokaryotic communities during the larval rearing of P. stylirostris. Overall, our results showed that drastic changes mostly occurred during the zoea stages suggesting that this larval phase is crucial during shrimp larval development.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms