通过考虑观测相关矩阵的抽样变异性改进平行分析的使用。

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yan Xia, Xinchang Zhou
{"title":"通过考虑观测相关矩阵的抽样变异性改进平行分析的使用。","authors":"Yan Xia, Xinchang Zhou","doi":"10.1177/00131644241268073","DOIUrl":null,"url":null,"abstract":"<p><p>Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the correlation matrix for a zero-factor model. This study argues that we should also address the sampling variability of eigenvalues obtained from the observed data, such that the results would inform practitioners of the variability of the number of factors across random samples. Thus, this study proposes to revise the parallel analysis to provide the proportion of random samples that suggest <i>k</i> factors (<i>k</i> = 0, 1, 2, . . .) rather than a single suggested number. Simulation results support the use of the proposed strategy, especially for research scenarios with limited sample sizes where sampling fluctuation is concerning.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644241268073"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572087/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving the Use of Parallel Analysis by Accounting for Sampling Variability of the Observed Correlation Matrix.\",\"authors\":\"Yan Xia, Xinchang Zhou\",\"doi\":\"10.1177/00131644241268073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the correlation matrix for a zero-factor model. This study argues that we should also address the sampling variability of eigenvalues obtained from the observed data, such that the results would inform practitioners of the variability of the number of factors across random samples. Thus, this study proposes to revise the parallel analysis to provide the proportion of random samples that suggest <i>k</i> factors (<i>k</i> = 0, 1, 2, . . .) rather than a single suggested number. Simulation results support the use of the proposed strategy, especially for research scenarios with limited sample sizes where sampling fluctuation is concerning.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\" \",\"pages\":\"00131644241268073\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572087/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644241268073\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644241268073","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

平行分析法被认为是确定因子分析中因子个数的最准确方法之一。与传统的因子保留方法(如凯撒法则)相比,平行分析法的一大优势在于它能解决从特征矩阵(代表零因子模型的相关矩阵)中获得的特征值的抽样变异性问题。本研究认为,我们还应该解决从观测数据中获得的特征值的抽样变异性问题,从而使研究结果能够告知从业人员不同随机样本中因子数量的变异性。因此,本研究建议修改并行分析,以提供建议 k 个因子(k = 0、1、2、...)的随机样本比例,而不是单一的建议因子数。模拟结果支持使用所建议的策略,尤其是在样本量有限、抽样波动令人担忧的研究场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Use of Parallel Analysis by Accounting for Sampling Variability of the Observed Correlation Matrix.

Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the correlation matrix for a zero-factor model. This study argues that we should also address the sampling variability of eigenvalues obtained from the observed data, such that the results would inform practitioners of the variability of the number of factors across random samples. Thus, this study proposes to revise the parallel analysis to provide the proportion of random samples that suggest k factors (k = 0, 1, 2, . . .) rather than a single suggested number. Simulation results support the use of the proposed strategy, especially for research scenarios with limited sample sizes where sampling fluctuation is concerning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信