Frédéric Rosa, Nicolas Dray, Sébastien Bedu, Laure Bally-Cuif
{"title":"成体神经干细胞的非凋亡性caspase事件和Atf3表达是神经元直接分化的基础。","authors":"Frédéric Rosa, Nicolas Dray, Sébastien Bedu, Laure Bally-Cuif","doi":"10.1242/dev.204381","DOIUrl":null,"url":null,"abstract":"<p><p>Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 22","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells.\",\"authors\":\"Frédéric Rosa, Nicolas Dray, Sébastien Bedu, Laure Bally-Cuif\",\"doi\":\"10.1242/dev.204381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\"151 22\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204381\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204381","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells.
Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.