Ilyas Ahmad, Chi Chen, Zohaib Younas, Tayyaba Yousaf, Zia-Ur-Rehman Mashwani
{"title":"通过分光光度法、超高效液相色谱分析和化学计量学模型揭示,种子和叶面施用纳米硒可通过光合色素、酶和化学抗氧化剂的增强提高芝麻三酰甘油和出油率。","authors":"Ilyas Ahmad, Chi Chen, Zohaib Younas, Tayyaba Yousaf, Zia-Ur-Rehman Mashwani","doi":"10.3389/fpls.2024.1431877","DOIUrl":null,"url":null,"abstract":"<p><p>The current study aimed to investigate the effects of plant-mediated selenium nanoparticles (SeNPs) on plant growth, photosynthetic pigments, antioxidant activity, and the triacylglycerol profile of sesame (<i>Sesamum indicum</i> L.). The green synthesis of SeNPs was achieved using garlic extract, resulting in spherical nanoparticles with an average size range of 70-75 nm. Three SeNP treatments (T3, 30 ppm; T4, 40 ppm; and T5, 50 ppm) were applied through seed and foliar spray on six sesame varieties (V1, TS-5; V2, TH-6; V3, Til-18; V4, Niab Millennium; V5, Niab Pearl; and V6, NS-16). All enzymatic antioxidant parameters showed an increase in the treated groups, such as SOD (74.4% in V1 at T4), POD (43% in V5 at T5), APX (62% in V1 at T3), and GPX (31.56% in V3 at T4). CAT showed the highest percentage improvement in T5 for V1, V2, V4, and V5, while V3 and V4 exhibited the highest values at T4. Likewise, seed antioxidant parameters also showed increase in antioxidant activity, highest total phenolic content (6.06 mg GAE/g) was found at T5 treatment with percent increase of 27.41%, but the highest percent increase was found to be at T4 treatments in V1 with increase of 46.83%. Percent oil yield was also noted to be higher as highest percent (60%) oil yield was obtained at T4 treatment in V3. Ultra High Performance Mass-Spectrometry (UHPLC-MS) analysis and chemometric modeling suggested a total of 10 triacylglycerol (TG) biomarkers separating untreated groups, with higher relative abundance values at T4 and T5 treatments compared to control. PCA and correlation analysis showed clustering of untreated groups from T4 and T5, which suggests that these two treatments result in higher accumulation of oil. A generalized linear model with ANOVA showed a highly significant impact of treatments on all the growth and oil parameters, with significance involvement of varieties. The interaction between variety and treatment showed no significant effect on the growth and oil biomarkers of sesame. However, it can be concluded that the T4 and T5 treatments (40 ppm and 50 ppm) of SeNPs, applied through seed and foliar methods, have a strong influence on the overall growth and oil yield of sesame. This warrants further transcriptomic and molecular analysis to gain deeper insight into the mechanisms of action of SeNPs.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1431877"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575262/pdf/","citationCount":"0","resultStr":"{\"title\":\"Seed and foliar application of nano-selenium improves sesame triacylglycerols and oil yield via photosynthetic pigment and enzymatic and chemical antioxidant enhancement revealed by spectrophotometric, UHPLC-analysis and chemometric modeling.\",\"authors\":\"Ilyas Ahmad, Chi Chen, Zohaib Younas, Tayyaba Yousaf, Zia-Ur-Rehman Mashwani\",\"doi\":\"10.3389/fpls.2024.1431877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current study aimed to investigate the effects of plant-mediated selenium nanoparticles (SeNPs) on plant growth, photosynthetic pigments, antioxidant activity, and the triacylglycerol profile of sesame (<i>Sesamum indicum</i> L.). The green synthesis of SeNPs was achieved using garlic extract, resulting in spherical nanoparticles with an average size range of 70-75 nm. Three SeNP treatments (T3, 30 ppm; T4, 40 ppm; and T5, 50 ppm) were applied through seed and foliar spray on six sesame varieties (V1, TS-5; V2, TH-6; V3, Til-18; V4, Niab Millennium; V5, Niab Pearl; and V6, NS-16). All enzymatic antioxidant parameters showed an increase in the treated groups, such as SOD (74.4% in V1 at T4), POD (43% in V5 at T5), APX (62% in V1 at T3), and GPX (31.56% in V3 at T4). CAT showed the highest percentage improvement in T5 for V1, V2, V4, and V5, while V3 and V4 exhibited the highest values at T4. Likewise, seed antioxidant parameters also showed increase in antioxidant activity, highest total phenolic content (6.06 mg GAE/g) was found at T5 treatment with percent increase of 27.41%, but the highest percent increase was found to be at T4 treatments in V1 with increase of 46.83%. Percent oil yield was also noted to be higher as highest percent (60%) oil yield was obtained at T4 treatment in V3. Ultra High Performance Mass-Spectrometry (UHPLC-MS) analysis and chemometric modeling suggested a total of 10 triacylglycerol (TG) biomarkers separating untreated groups, with higher relative abundance values at T4 and T5 treatments compared to control. PCA and correlation analysis showed clustering of untreated groups from T4 and T5, which suggests that these two treatments result in higher accumulation of oil. A generalized linear model with ANOVA showed a highly significant impact of treatments on all the growth and oil parameters, with significance involvement of varieties. The interaction between variety and treatment showed no significant effect on the growth and oil biomarkers of sesame. However, it can be concluded that the T4 and T5 treatments (40 ppm and 50 ppm) of SeNPs, applied through seed and foliar methods, have a strong influence on the overall growth and oil yield of sesame. This warrants further transcriptomic and molecular analysis to gain deeper insight into the mechanisms of action of SeNPs.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"15 \",\"pages\":\"1431877\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575262/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.1431877\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1431877","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Seed and foliar application of nano-selenium improves sesame triacylglycerols and oil yield via photosynthetic pigment and enzymatic and chemical antioxidant enhancement revealed by spectrophotometric, UHPLC-analysis and chemometric modeling.
The current study aimed to investigate the effects of plant-mediated selenium nanoparticles (SeNPs) on plant growth, photosynthetic pigments, antioxidant activity, and the triacylglycerol profile of sesame (Sesamum indicum L.). The green synthesis of SeNPs was achieved using garlic extract, resulting in spherical nanoparticles with an average size range of 70-75 nm. Three SeNP treatments (T3, 30 ppm; T4, 40 ppm; and T5, 50 ppm) were applied through seed and foliar spray on six sesame varieties (V1, TS-5; V2, TH-6; V3, Til-18; V4, Niab Millennium; V5, Niab Pearl; and V6, NS-16). All enzymatic antioxidant parameters showed an increase in the treated groups, such as SOD (74.4% in V1 at T4), POD (43% in V5 at T5), APX (62% in V1 at T3), and GPX (31.56% in V3 at T4). CAT showed the highest percentage improvement in T5 for V1, V2, V4, and V5, while V3 and V4 exhibited the highest values at T4. Likewise, seed antioxidant parameters also showed increase in antioxidant activity, highest total phenolic content (6.06 mg GAE/g) was found at T5 treatment with percent increase of 27.41%, but the highest percent increase was found to be at T4 treatments in V1 with increase of 46.83%. Percent oil yield was also noted to be higher as highest percent (60%) oil yield was obtained at T4 treatment in V3. Ultra High Performance Mass-Spectrometry (UHPLC-MS) analysis and chemometric modeling suggested a total of 10 triacylglycerol (TG) biomarkers separating untreated groups, with higher relative abundance values at T4 and T5 treatments compared to control. PCA and correlation analysis showed clustering of untreated groups from T4 and T5, which suggests that these two treatments result in higher accumulation of oil. A generalized linear model with ANOVA showed a highly significant impact of treatments on all the growth and oil parameters, with significance involvement of varieties. The interaction between variety and treatment showed no significant effect on the growth and oil biomarkers of sesame. However, it can be concluded that the T4 and T5 treatments (40 ppm and 50 ppm) of SeNPs, applied through seed and foliar methods, have a strong influence on the overall growth and oil yield of sesame. This warrants further transcriptomic and molecular analysis to gain deeper insight into the mechanisms of action of SeNPs.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.