James J. Valdés, Daniel A. Petrash, Kurt O. Konhauser
{"title":"探索嗜水草菌属中 LanM 同源物的新型内科学模型","authors":"James J. Valdés, Daniel A. Petrash, Kurt O. Konhauser","doi":"10.1038/s42003-024-07258-3","DOIUrl":null,"url":null,"abstract":"Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln3+). We observe Hyphomicrobium spp. as part of a Fe2+/Mn2+-oxidizing consortia native to the ferruginous bottom waters of a Ln3+-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln3+ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln3+ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln3+, including an outer membrane receptor that binds Ln3+-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln3+ enriched zones of metal-polluted environments. Microorganisms in a metal-enriched post-mining lake reveal the potential of Hyphomicrobium spp. for lanthanide recovery. A H. methylovorum protein shows strong affinity for light lanthanides,providing insights into microbial metal uptake strategies.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":" ","pages":"1-11"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576760/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel in-silico model explores LanM homologs among Hyphomicrobium spp\",\"authors\":\"James J. Valdés, Daniel A. Petrash, Kurt O. Konhauser\",\"doi\":\"10.1038/s42003-024-07258-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln3+). We observe Hyphomicrobium spp. as part of a Fe2+/Mn2+-oxidizing consortia native to the ferruginous bottom waters of a Ln3+-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln3+ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln3+ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln3+, including an outer membrane receptor that binds Ln3+-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln3+ enriched zones of metal-polluted environments. Microorganisms in a metal-enriched post-mining lake reveal the potential of Hyphomicrobium spp. for lanthanide recovery. A H. methylovorum protein shows strong affinity for light lanthanides,providing insights into microbial metal uptake strategies.\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s42003-024-07258-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07258-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A novel in-silico model explores LanM homologs among Hyphomicrobium spp
Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln3+). We observe Hyphomicrobium spp. as part of a Fe2+/Mn2+-oxidizing consortia native to the ferruginous bottom waters of a Ln3+-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln3+ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln3+ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln3+, including an outer membrane receptor that binds Ln3+-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln3+ enriched zones of metal-polluted environments. Microorganisms in a metal-enriched post-mining lake reveal the potential of Hyphomicrobium spp. for lanthanide recovery. A H. methylovorum protein shows strong affinity for light lanthanides,providing insights into microbial metal uptake strategies.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.