黄土高原植被恢复后土壤入渗量的变化及其影响因素。

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Shuyu Zhang, Guangju Zhao, Junjian Fan, Mingyue Yang, Peng Tian, Xingmin Mu, Ren Geng
{"title":"黄土高原植被恢复后土壤入渗量的变化及其影响因素。","authors":"Shuyu Zhang, Guangju Zhao, Junjian Fan, Mingyue Yang, Peng Tian, Xingmin Mu, Ren Geng","doi":"10.1016/j.jenvman.2024.123356","DOIUrl":null,"url":null,"abstract":"<p><p>Soil infiltration is essential in the hydrological cycle, fulfilling plant water requirements, particularly in semi-arid regions such as the Loess Plateau. However, comprehensive characterization of soil infiltration responses to different vegetation restoration types remains unclear. Therefore, this study aims to examine the effects of revegetation on soil infiltration by conducting field experiments with nine representative plant species across five vegetation restoration types. Specifically, we focused on how revegetation affects soil and root properties to determine key factors impacting soil infiltration. The results showed that artificial forestland and natural grassland exhibited the most substantial effects on soil properties. Natural grassland exhibited the highest soil aggregate stability and organic matter content. Root length density and root surface area increased after vegetation restoration, most notably in artificial forestland. Root characteristics were positively correlated with aggregate stability, soil organic matter, and porosity. An increase in root surface area significantly enhanced the steady infiltration rate and saturated hydraulic conductivity (P < 0.01). Except for economic forestland, all types of vegetation restoration improved soil infiltration properties, especially notable in Artemisia sacrorum and Platycladus orientalis. The soil infiltration properties in forestland surpassed those in natural grassland, artificial grassland, and shrubland. Random Forest Regression (RFR) suggested that soil particle size, porosity, and aggerate stability were key predictors of soil infiltration properties. Partial least squares structural equation modeling (PLS-SEM) indicated that soil infiltration rates were altered by root-mediated changes in soil porosity. Additionally, soil organic matter exerts an indirect positive effect on infiltration rates by influencing soil aggregate stability. These findings are crucial for evaluating hydrological processes and devising more effective ecological restoration and soil and water conservation strategies in the Loess Plateau.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"372 ","pages":"123356"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations of soil infiltration in response to vegetation restoration and its influencing factors on the Loess Plateau.\",\"authors\":\"Shuyu Zhang, Guangju Zhao, Junjian Fan, Mingyue Yang, Peng Tian, Xingmin Mu, Ren Geng\",\"doi\":\"10.1016/j.jenvman.2024.123356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil infiltration is essential in the hydrological cycle, fulfilling plant water requirements, particularly in semi-arid regions such as the Loess Plateau. However, comprehensive characterization of soil infiltration responses to different vegetation restoration types remains unclear. Therefore, this study aims to examine the effects of revegetation on soil infiltration by conducting field experiments with nine representative plant species across five vegetation restoration types. Specifically, we focused on how revegetation affects soil and root properties to determine key factors impacting soil infiltration. The results showed that artificial forestland and natural grassland exhibited the most substantial effects on soil properties. Natural grassland exhibited the highest soil aggregate stability and organic matter content. Root length density and root surface area increased after vegetation restoration, most notably in artificial forestland. Root characteristics were positively correlated with aggregate stability, soil organic matter, and porosity. An increase in root surface area significantly enhanced the steady infiltration rate and saturated hydraulic conductivity (P < 0.01). Except for economic forestland, all types of vegetation restoration improved soil infiltration properties, especially notable in Artemisia sacrorum and Platycladus orientalis. The soil infiltration properties in forestland surpassed those in natural grassland, artificial grassland, and shrubland. Random Forest Regression (RFR) suggested that soil particle size, porosity, and aggerate stability were key predictors of soil infiltration properties. Partial least squares structural equation modeling (PLS-SEM) indicated that soil infiltration rates were altered by root-mediated changes in soil porosity. Additionally, soil organic matter exerts an indirect positive effect on infiltration rates by influencing soil aggregate stability. These findings are crucial for evaluating hydrological processes and devising more effective ecological restoration and soil and water conservation strategies in the Loess Plateau.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"372 \",\"pages\":\"123356\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2024.123356\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123356","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土壤渗透在水文循环中至关重要,可满足植物对水分的需求,尤其是在黄土高原等半干旱地区。然而,不同植被恢复类型对土壤入渗反应的综合特征还不清楚。因此,本研究旨在通过对五种植被恢复类型的九种代表性植物进行实地实验,研究植被重建对土壤入渗的影响。具体而言,我们重点关注植被重建如何影响土壤和根系特性,以确定影响土壤入渗的关键因素。结果表明,人工林地和天然草地对土壤性质的影响最大。天然草地的土壤团聚稳定性和有机质含量最高。植被恢复后,根系长度密度和根系表面积增加,人工林地最为明显。根系特征与土壤团聚体稳定性、土壤有机质和孔隙度呈正相关。根系表面积的增加显著提高了稳定入渗率和饱和导水率(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variations of soil infiltration in response to vegetation restoration and its influencing factors on the Loess Plateau.

Soil infiltration is essential in the hydrological cycle, fulfilling plant water requirements, particularly in semi-arid regions such as the Loess Plateau. However, comprehensive characterization of soil infiltration responses to different vegetation restoration types remains unclear. Therefore, this study aims to examine the effects of revegetation on soil infiltration by conducting field experiments with nine representative plant species across five vegetation restoration types. Specifically, we focused on how revegetation affects soil and root properties to determine key factors impacting soil infiltration. The results showed that artificial forestland and natural grassland exhibited the most substantial effects on soil properties. Natural grassland exhibited the highest soil aggregate stability and organic matter content. Root length density and root surface area increased after vegetation restoration, most notably in artificial forestland. Root characteristics were positively correlated with aggregate stability, soil organic matter, and porosity. An increase in root surface area significantly enhanced the steady infiltration rate and saturated hydraulic conductivity (P < 0.01). Except for economic forestland, all types of vegetation restoration improved soil infiltration properties, especially notable in Artemisia sacrorum and Platycladus orientalis. The soil infiltration properties in forestland surpassed those in natural grassland, artificial grassland, and shrubland. Random Forest Regression (RFR) suggested that soil particle size, porosity, and aggerate stability were key predictors of soil infiltration properties. Partial least squares structural equation modeling (PLS-SEM) indicated that soil infiltration rates were altered by root-mediated changes in soil porosity. Additionally, soil organic matter exerts an indirect positive effect on infiltration rates by influencing soil aggregate stability. These findings are crucial for evaluating hydrological processes and devising more effective ecological restoration and soil and water conservation strategies in the Loess Plateau.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信