外源硅通过激活盐胁迫和干旱胁迫下甘草茎的非结构性碳水化合物和结构性碳水化合物代谢,提高了细胞壁的稳定性。

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yi Li, Wenjin Zhang, Yufang Huang, Gaochang Cui, Xinhui Zhang
{"title":"外源硅通过激活盐胁迫和干旱胁迫下甘草茎的非结构性碳水化合物和结构性碳水化合物代谢,提高了细胞壁的稳定性。","authors":"Yi Li, Wenjin Zhang, Yufang Huang, Gaochang Cui, Xinhui Zhang","doi":"10.1016/j.ijbiomac.2024.137817","DOIUrl":null,"url":null,"abstract":"<p><p>The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137817"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem.\",\"authors\":\"Yi Li, Wenjin Zhang, Yufang Huang, Gaochang Cui, Xinhui Zhang\",\"doi\":\"10.1016/j.ijbiomac.2024.137817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137817\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137817\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137817","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物细胞壁是抵御环境胁迫的重要屏障,主要由木质素和纤维素、半纤维素、果胶等碳水化合物组成。本研究通过生理、生化和转录组学联合分析,探讨了在盐和干旱(S + D)胁迫下,硅(Si)对甘草茎细胞壁成分的直接调控机制,以及由二磷酸尿苷葡萄糖(UDPG)介导的非结构性碳水化合物对结构性碳水化合物的间接调控机制。在S+D胁迫下,Si通过调节细胞壁生物合成相关基因的表达水平和酶活性,增加了细胞壁成分的含量,改变了细胞壁的结构,直接促进了细胞壁的重建。同时,Si 通过调节多糖合成代谢途径中的酶活性和基因表达水平,促进碳水化合物的积累,从而促进 UDPG 转化,间接为细胞壁合成提供底物。总之,Si 通过调节细胞壁代谢和非结构性碳水化合物代谢,直接和间接地促进细胞壁成分的合成,从而强化细胞壁,增强其稳定性,提高 G. uralensis 茎的耐盐性和耐旱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem.

The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信