增强自组装单层膜的压敏电导率

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-12-04 Epub Date: 2024-11-19 DOI:10.1021/acsami.4c15796
Xintai Wang, Asma Alajmi, Zhangchenyu Wei, Mohammed Alzanbaqi, Naixu Wei, Colin Lambert, Ali Ismael
{"title":"增强自组装单层膜的压敏电导率","authors":"Xintai Wang, Asma Alajmi, Zhangchenyu Wei, Mohammed Alzanbaqi, Naixu Wei, Colin Lambert, Ali Ismael","doi":"10.1021/acsami.4c15796","DOIUrl":null,"url":null,"abstract":"<p><p>The inherent large HOMO-LUMO gap of alkyl thiol (CnS) self-assembled monolayers (SAMs) has limited their application in molecular electronics. This work demonstrates significant enhancement of mechano-electrical sensitivity in CnS SAMs by external compression, achieving a gauge factor (GF) of approximately 10 for C10S SAMs. This GF surpasses values reported for conjugated wires and DNA strands, highlighting the potential of CnS SAMs in mechanosensitive devices. Conductive atomic force microscopy (cAFM) investigations reveal a strong dependence of GF on the alkyl chain length in probe/CnS/Au junctions. This dependence arises from the combined influence of molecular tilting and probe penetration, facilitated by the low Young's modulus of alkyl chains. Theoretical simulations corroborate these findings, demonstrating a shift in the electrode Fermi level toward the molecular resonance region with increasing chain length and compression. Introducing a rigid graphene interlayer prevents probe penetration, resulting in a GF that is largely independent of the alkyl chain length. This highlights the critical role of probe penetration in maximizing mechano-electrical sensitivity. These findings pave the way for incorporating CnS SAMs into mechanosensitive and mechanocontrollable molecular electronic devices, including touch-sensitive electronic skin and advanced sensor technologies. This work demonstrates the potential of tailoring mechanical and electrical properties of SAMs through molecular engineering and interface modifications for optimized performance in specific applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"66290-66300"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Pressure-Sensitive Electrical Conductance of Self-Assembled Monolayers.\",\"authors\":\"Xintai Wang, Asma Alajmi, Zhangchenyu Wei, Mohammed Alzanbaqi, Naixu Wei, Colin Lambert, Ali Ismael\",\"doi\":\"10.1021/acsami.4c15796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inherent large HOMO-LUMO gap of alkyl thiol (CnS) self-assembled monolayers (SAMs) has limited their application in molecular electronics. This work demonstrates significant enhancement of mechano-electrical sensitivity in CnS SAMs by external compression, achieving a gauge factor (GF) of approximately 10 for C10S SAMs. This GF surpasses values reported for conjugated wires and DNA strands, highlighting the potential of CnS SAMs in mechanosensitive devices. Conductive atomic force microscopy (cAFM) investigations reveal a strong dependence of GF on the alkyl chain length in probe/CnS/Au junctions. This dependence arises from the combined influence of molecular tilting and probe penetration, facilitated by the low Young's modulus of alkyl chains. Theoretical simulations corroborate these findings, demonstrating a shift in the electrode Fermi level toward the molecular resonance region with increasing chain length and compression. Introducing a rigid graphene interlayer prevents probe penetration, resulting in a GF that is largely independent of the alkyl chain length. This highlights the critical role of probe penetration in maximizing mechano-electrical sensitivity. These findings pave the way for incorporating CnS SAMs into mechanosensitive and mechanocontrollable molecular electronic devices, including touch-sensitive electronic skin and advanced sensor technologies. This work demonstrates the potential of tailoring mechanical and electrical properties of SAMs through molecular engineering and interface modifications for optimized performance in specific applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"66290-66300\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c15796\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15796","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

烷基硫醇(CnS)自组装单层(SAM)固有的较大 HOMO-LUMO 间隙限制了它们在分子电子学中的应用。这项研究表明,通过外部压缩,CnS SAMs 的机械电灵敏度显著提高,C10S SAMs 的量规因子 (GF) 达到约 10。这一 GF 值超过了已报道的共轭导线和 DNA 链的数值,凸显了 CnS SAMs 在机械敏感器件中的潜力。传导原子力显微镜(cAFM)研究表明,在探针/CnS/Au 连接中,GF 与烷基链长度有很大关系。这种依赖性源于分子倾斜和探针穿透力的共同影响,而烷基链的低杨氏模量又为这种影响提供了便利。理论模拟证实了这些发现,表明随着链长的增加和压缩,电极费米级向分子共振区移动。引入刚性石墨烯夹层会阻止探针穿透,导致 GF 与烷基链长度基本无关。这凸显了探针穿透在最大限度提高机械电灵敏度方面的关键作用。这些发现为将 CnS SAM 纳入机械敏感和机械可控的分子电子器件(包括触敏电子皮肤和先进的传感器技术)铺平了道路。这项工作展示了通过分子工程和界面修饰来定制 SAMs 机械和电气特性的潜力,从而优化其在特定应用中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Pressure-Sensitive Electrical Conductance of Self-Assembled Monolayers.

The inherent large HOMO-LUMO gap of alkyl thiol (CnS) self-assembled monolayers (SAMs) has limited their application in molecular electronics. This work demonstrates significant enhancement of mechano-electrical sensitivity in CnS SAMs by external compression, achieving a gauge factor (GF) of approximately 10 for C10S SAMs. This GF surpasses values reported for conjugated wires and DNA strands, highlighting the potential of CnS SAMs in mechanosensitive devices. Conductive atomic force microscopy (cAFM) investigations reveal a strong dependence of GF on the alkyl chain length in probe/CnS/Au junctions. This dependence arises from the combined influence of molecular tilting and probe penetration, facilitated by the low Young's modulus of alkyl chains. Theoretical simulations corroborate these findings, demonstrating a shift in the electrode Fermi level toward the molecular resonance region with increasing chain length and compression. Introducing a rigid graphene interlayer prevents probe penetration, resulting in a GF that is largely independent of the alkyl chain length. This highlights the critical role of probe penetration in maximizing mechano-electrical sensitivity. These findings pave the way for incorporating CnS SAMs into mechanosensitive and mechanocontrollable molecular electronic devices, including touch-sensitive electronic skin and advanced sensor technologies. This work demonstrates the potential of tailoring mechanical and electrical properties of SAMs through molecular engineering and interface modifications for optimized performance in specific applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信