电子相关性对 [2Fe-2S] 系统几何和电子结构的重要性:Fe2S2(SCH3)4]2-,3-,4-、[Fe2S2(SCys)4]2-、[Fe2S2(S-p-tol)4]2- 和 [Fe2S2(S-o-xyl)4]2- 复合物的基准研究。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2024-12-10 Epub Date: 2024-11-19 DOI:10.1021/acs.jctc.4c00781
Demeter Tzeli, Pavlo Golub, Jiri Brabec, Mikuláš Matoušek, Katarzyna Pernal, Libor Veis, Simone Raugei, Sotiris S Xantheas
{"title":"电子相关性对 [2Fe-2S] 系统几何和电子结构的重要性:Fe2S2(SCH3)4]2-,3-,4-、[Fe2S2(SCys)4]2-、[Fe2S2(S-p-tol)4]2- 和 [Fe2S2(S-o-xyl)4]2- 复合物的基准研究。","authors":"Demeter Tzeli, Pavlo Golub, Jiri Brabec, Mikuláš Matoušek, Katarzyna Pernal, Libor Veis, Simone Raugei, Sotiris S Xantheas","doi":"10.1021/acs.jctc.4c00781","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-sulfur clusters are crucial for biological electron transport and catalysis. Obtaining accurate geometries, energetics, manifolds of their excited electronic states, and reduction energies is important to understand their role in these processes. Using a [2Fe-2S] model complex with Fe<sup>II</sup> and Fe<sup>III</sup> oxidation states, which leads to different charges, i.e., [Fe<sub>2</sub>S<sub>2</sub>(SMe)<sub>4</sub>]<sup>2-,3-,4-</sup>, we benchmarked a variety of computational methodologies ranging from density functional theory (DFT) to post-Hartree-Fock methods, including complete active space self-consistent field (CASSCF), multireference configuration interaction, the second-order N-electron valence state perturbation theory (NEVPT2), and the linearized integrand approximation of adiabatic connection (AC0) approaches. Additionally, we studied three experimentally well-characterized complexes, [Fe<sub>2</sub>S<sub>2</sub>(SCys)<sub>4</sub>]<sup>2-</sup>, [Fe<sub>2</sub>S<sub>2</sub>(S-<i>o</i>-tol)<sub>4</sub>]<sup>2-</sup>, and [Fe<sub>2</sub>S<sub>2</sub>(S-<i>o</i>-xyl)<sub>4</sub>]<sup>2-</sup>, via DFT methods. We conclude that the dynamic electron correlation is important for accurately predicting the geometry of these complexes. Broken symmetry (BS) DFT correctly predicts experimental geometries of low-spin multiplicity, while CASSCF does not. However, BS-DFT significantly overestimates the difference between the low- and high-spin electronic states for a given oxidation state. At the same time, CASSCF underestimates it but provides relative energies closer to the reference NEVPT2 results. Finally, AC0 provides energetics of NEVPT2 quality with the additional advantage of being able to use large CASSCF sizes. NEVPT2 gives the best estimates of the Fe<sup>III</sup>/Fe<sup>III</sup> → Fe<sup>II</sup>/Fe<sup>III</sup> (4.27 eV) and Fe<sup>II</sup>/F<sup>III</sup> → Fe<sup>II</sup>/F<sup>II</sup> (7.72 eV) reduction energies. The results provide insight into the electronic structure of these complexes and assist in the understanding of their physical properties.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10406-10423"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe-2S] Systems: A Benchmark Study of the [Fe<sub>2</sub>S<sub>2</sub>(SCH<sub>3</sub>)<sub>4</sub>]<sup>2-,3-,4-</sup>, [Fe<sub>2</sub>S<sub>2</sub>(SCys)<sub>4</sub>]<sup>2-</sup>, [Fe<sub>2</sub>S<sub>2</sub>(S-<i>p</i>-tol)<sub>4</sub>]<sup>2-</sup>, and [Fe<sub>2</sub>S<sub>2</sub>(S-<i>o</i>-xyl)<sub>4</sub>]<sup>2-</sup> Complexes.\",\"authors\":\"Demeter Tzeli, Pavlo Golub, Jiri Brabec, Mikuláš Matoušek, Katarzyna Pernal, Libor Veis, Simone Raugei, Sotiris S Xantheas\",\"doi\":\"10.1021/acs.jctc.4c00781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron-sulfur clusters are crucial for biological electron transport and catalysis. Obtaining accurate geometries, energetics, manifolds of their excited electronic states, and reduction energies is important to understand their role in these processes. Using a [2Fe-2S] model complex with Fe<sup>II</sup> and Fe<sup>III</sup> oxidation states, which leads to different charges, i.e., [Fe<sub>2</sub>S<sub>2</sub>(SMe)<sub>4</sub>]<sup>2-,3-,4-</sup>, we benchmarked a variety of computational methodologies ranging from density functional theory (DFT) to post-Hartree-Fock methods, including complete active space self-consistent field (CASSCF), multireference configuration interaction, the second-order N-electron valence state perturbation theory (NEVPT2), and the linearized integrand approximation of adiabatic connection (AC0) approaches. Additionally, we studied three experimentally well-characterized complexes, [Fe<sub>2</sub>S<sub>2</sub>(SCys)<sub>4</sub>]<sup>2-</sup>, [Fe<sub>2</sub>S<sub>2</sub>(S-<i>o</i>-tol)<sub>4</sub>]<sup>2-</sup>, and [Fe<sub>2</sub>S<sub>2</sub>(S-<i>o</i>-xyl)<sub>4</sub>]<sup>2-</sup>, via DFT methods. We conclude that the dynamic electron correlation is important for accurately predicting the geometry of these complexes. Broken symmetry (BS) DFT correctly predicts experimental geometries of low-spin multiplicity, while CASSCF does not. However, BS-DFT significantly overestimates the difference between the low- and high-spin electronic states for a given oxidation state. At the same time, CASSCF underestimates it but provides relative energies closer to the reference NEVPT2 results. Finally, AC0 provides energetics of NEVPT2 quality with the additional advantage of being able to use large CASSCF sizes. NEVPT2 gives the best estimates of the Fe<sup>III</sup>/Fe<sup>III</sup> → Fe<sup>II</sup>/Fe<sup>III</sup> (4.27 eV) and Fe<sup>II</sup>/F<sup>III</sup> → Fe<sup>II</sup>/F<sup>II</sup> (7.72 eV) reduction energies. The results provide insight into the electronic structure of these complexes and assist in the understanding of their physical properties.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"10406-10423\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00781\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00781","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铁硫团簇对生物电子传递和催化作用至关重要。获得准确的几何结构、能量、激发电子态的流形以及还原能对于了解它们在这些过程中的作用非常重要。利用具有 FeII 和 FeIII 氧化态的[2Fe-2S]模型复合物,可得到不同的电荷,即[Fe2S2(SMe)]、[Fe2S2(SMe)4]2-,3-,4-,我们对从密度泛函理论(DFT)到后哈特里-福克(post-Hartree-Fock)方法等多种计算方法进行了基准测试,包括完全活动空间自洽场(CASSCF)、多参量构型相互作用、二阶 N 电子价态扰动理论(NEVPT2)和绝热连接线性化积分近似(AC0)方法。此外,我们还通过 DFT 方法研究了[Fe2S2(SCys)4]2-、[Fe2S2(S-o-tol)4]2- 和[Fe2S2(S-o-xyl)4]2- 这三种实验表征良好的配合物。我们的结论是,动态电子相关对于准确预测这些复合物的几何形状非常重要。断对称(BS)DFT 能正确预测低自旋倍率的实验几何形状,而 CASSCF 则不能。然而,BS-DFT 大大高估了给定氧化态的低自旋和高自旋电子态之间的差异。同时,CASSCF 低估了这一差异,但提供的相对能量更接近 NEVPT2 的参考结果。最后,AC0 提供了与 NEVPT2 质量相当的能量,并具有能够使用大尺寸 CASSCF 的额外优势。NEVPT2 对 FeIII/FeIII → FeII/FeIII (4.27 eV) 和 FeII/FIII → FeII/FII (7.72 eV) 的还原能给出了最佳估计。这些结果有助于深入了解这些复合物的电子结构,并有助于理解它们的物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Importance of Electron Correlation on the Geometry and Electronic Structure of [2Fe-2S] Systems: A Benchmark Study of the [Fe2S2(SCH3)4]2-,3-,4-, [Fe2S2(SCys)4]2-, [Fe2S2(S-p-tol)4]2-, and [Fe2S2(S-o-xyl)4]2- Complexes.

Iron-sulfur clusters are crucial for biological electron transport and catalysis. Obtaining accurate geometries, energetics, manifolds of their excited electronic states, and reduction energies is important to understand their role in these processes. Using a [2Fe-2S] model complex with FeII and FeIII oxidation states, which leads to different charges, i.e., [Fe2S2(SMe)4]2-,3-,4-, we benchmarked a variety of computational methodologies ranging from density functional theory (DFT) to post-Hartree-Fock methods, including complete active space self-consistent field (CASSCF), multireference configuration interaction, the second-order N-electron valence state perturbation theory (NEVPT2), and the linearized integrand approximation of adiabatic connection (AC0) approaches. Additionally, we studied three experimentally well-characterized complexes, [Fe2S2(SCys)4]2-, [Fe2S2(S-o-tol)4]2-, and [Fe2S2(S-o-xyl)4]2-, via DFT methods. We conclude that the dynamic electron correlation is important for accurately predicting the geometry of these complexes. Broken symmetry (BS) DFT correctly predicts experimental geometries of low-spin multiplicity, while CASSCF does not. However, BS-DFT significantly overestimates the difference between the low- and high-spin electronic states for a given oxidation state. At the same time, CASSCF underestimates it but provides relative energies closer to the reference NEVPT2 results. Finally, AC0 provides energetics of NEVPT2 quality with the additional advantage of being able to use large CASSCF sizes. NEVPT2 gives the best estimates of the FeIII/FeIII → FeII/FeIII (4.27 eV) and FeII/FIII → FeII/FII (7.72 eV) reduction energies. The results provide insight into the electronic structure of these complexes and assist in the understanding of their physical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信