镁对功能分级 A413 复合材料微观结构、力学性能和表面粗糙度的影响:线切割放电加工区的机器学习方法

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mathimurugan Natarajan, Subramanian Ramanathan, Venkatesh Chenrayan, Hanabe Chowdappa Ananda Murthy
{"title":"镁对功能分级 A413 复合材料微观结构、力学性能和表面粗糙度的影响:线切割放电加工区的机器学习方法","authors":"Mathimurugan Natarajan,&nbsp;Subramanian Ramanathan,&nbsp;Venkatesh Chenrayan,&nbsp;Hanabe Chowdappa Ananda Murthy","doi":"10.1002/adem.202401739","DOIUrl":null,"url":null,"abstract":"<p>The present study assists the industrial sectors by implementing low-weight high-strength aluminium composite. The pristine magnesium as a reinforcement in three different weight percentages (3.5, 7, and 10.5) is utilized to fabricate the A 413 composite using centrifugal casting. The density analysis concludes a higher level of Mg inclusion prompts the material to save 3.9% of weight. Microstructural study of centrifugal casting specimens reveal a rich existence of hard phase Mg<sub>2</sub>Si in the outer zone, with its richness decreasing toward the inner zone. The tensile test result affirms the functionally graded nature of the material with the increasing trend of tensile strength from the inner to the outer. Fractured surface analysis concludes the existence of cracks and their propagation for the inner region specimen. The influence of magnesium on the surface finish of functionally graded composite at the wire cut electric discharge machining (WEDM) zone is predicted using a machine learning-based random forest regressor (RFR) algorithm. The supervised learning algorithm declares that 10.5 wt% of Mg facilitates the minimal surface roughness of 0.229 µm with the optimal combination of parameters 6 A of current, 115 µs of pulse-on time, 60 µs of pulse-off time, and 8 N of wire tension.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Mg on the Microstructure, Mechanical Properties, and Surface Roughness of Functionally Graded A413 Composite: Machine Learning Approach at Wire-Cut Electric Discharge Machining Zone\",\"authors\":\"Mathimurugan Natarajan,&nbsp;Subramanian Ramanathan,&nbsp;Venkatesh Chenrayan,&nbsp;Hanabe Chowdappa Ananda Murthy\",\"doi\":\"10.1002/adem.202401739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study assists the industrial sectors by implementing low-weight high-strength aluminium composite. The pristine magnesium as a reinforcement in three different weight percentages (3.5, 7, and 10.5) is utilized to fabricate the A 413 composite using centrifugal casting. The density analysis concludes a higher level of Mg inclusion prompts the material to save 3.9% of weight. Microstructural study of centrifugal casting specimens reveal a rich existence of hard phase Mg<sub>2</sub>Si in the outer zone, with its richness decreasing toward the inner zone. The tensile test result affirms the functionally graded nature of the material with the increasing trend of tensile strength from the inner to the outer. Fractured surface analysis concludes the existence of cracks and their propagation for the inner region specimen. The influence of magnesium on the surface finish of functionally graded composite at the wire cut electric discharge machining (WEDM) zone is predicted using a machine learning-based random forest regressor (RFR) algorithm. The supervised learning algorithm declares that 10.5 wt% of Mg facilitates the minimal surface roughness of 0.229 µm with the optimal combination of parameters 6 A of current, 115 µs of pulse-on time, 60 µs of pulse-off time, and 8 N of wire tension.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 22\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401739\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401739","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过采用低重量高强度铝复合材料为工业部门提供帮助。利用三种不同重量百分比(3.5、7 和 10.5)的原始镁作为增强材料,采用离心铸造法制造 A 413 复合材料。密度分析结果表明,掺入较多的镁可使材料减重 3.9%。离心铸造试样的微观结构研究表明,外区存在丰富的硬质相 Mg2Si,其丰富度向内区递减。拉伸试验结果证实了材料的功能分级性质,拉伸强度呈由内向外递增的趋势。断裂表面分析得出结论,内区试样存在裂缝并向外扩展。使用基于机器学习的随机森林回归算法(RFR)预测了镁对线切割放电加工(WEDM)区功能分级复合材料表面光洁度的影响。监督学习算法表明,在电流为 6 A、脉冲开启时间为 115 µs、脉冲关闭时间为 60 µs、线拉力为 8 N 的最佳参数组合下,10.5 wt% 的镁有助于获得 0.229 µm 的最小表面粗糙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Mg on the Microstructure, Mechanical Properties, and Surface Roughness of Functionally Graded A413 Composite: Machine Learning Approach at Wire-Cut Electric Discharge Machining Zone

Effect of Mg on the Microstructure, Mechanical Properties, and Surface Roughness of Functionally Graded A413 Composite: Machine Learning Approach at Wire-Cut Electric Discharge Machining Zone

The present study assists the industrial sectors by implementing low-weight high-strength aluminium composite. The pristine magnesium as a reinforcement in three different weight percentages (3.5, 7, and 10.5) is utilized to fabricate the A 413 composite using centrifugal casting. The density analysis concludes a higher level of Mg inclusion prompts the material to save 3.9% of weight. Microstructural study of centrifugal casting specimens reveal a rich existence of hard phase Mg2Si in the outer zone, with its richness decreasing toward the inner zone. The tensile test result affirms the functionally graded nature of the material with the increasing trend of tensile strength from the inner to the outer. Fractured surface analysis concludes the existence of cracks and their propagation for the inner region specimen. The influence of magnesium on the surface finish of functionally graded composite at the wire cut electric discharge machining (WEDM) zone is predicted using a machine learning-based random forest regressor (RFR) algorithm. The supervised learning algorithm declares that 10.5 wt% of Mg facilitates the minimal surface roughness of 0.229 µm with the optimal combination of parameters 6 A of current, 115 µs of pulse-on time, 60 µs of pulse-off time, and 8 N of wire tension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信