风力涡轮发电机故障分析和故障诊断:综述

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Huan Liu, YuZe Wang, Tao Zeng, HaiFeng Wang, Shing-Chow Chan, Li Ran
{"title":"风力涡轮发电机故障分析和故障诊断:综述","authors":"Huan Liu,&nbsp;YuZe Wang,&nbsp;Tao Zeng,&nbsp;HaiFeng Wang,&nbsp;Shing-Chow Chan,&nbsp;Li Ran","doi":"10.1049/rpg2.13104","DOIUrl":null,"url":null,"abstract":"<p>The large scale deployment of modern wind turbines and the yearly increase of installed capacity have drawn attention to their operation and maintenance issues. The development of highly reliable and low-maintenance wind turbines is an urgent demand in order to achieve the low-carbon goals, and the arrival of fault diagnosis provides assurance for its satisfactory operation and maintenance. Numerous statistical studies have pointed out that generator failures are a main cause of wind turbine system downtime. The generator, as one of the core components, converts rotating mechanical energy into electrical energy. However, the generators can hardly operate reliably towards the end of the turbine life owing to the variable-speed conditions and harsh electromagnetic environments. This article first provides a comprehensive and up-to-date review of the electrical and mechanical failures of various parts (stator, rotor, air gap and bearings) of the generator. Then the fault characteristics and diagnostic processes of generators are investigated, and the principles and processes of fault diagnosis are discussed. Finally, the application of four categories of model-based, signal-based, knowledge-based and hybrid approaches to wind turbine generator fault diagnosis is summarized. The comprehensive review shows that the hybrid approach is now the leading and most accurate tool for real-time fault diagnosis for wind turbine generators. A qualitative and quantitative assessment of algorithm performance using false alarm rates is proposed. The methodology can subsequently be applied to the wind industry.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3127-3148"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13104","citationCount":"0","resultStr":"{\"title\":\"Wind turbine generator failure analysis and fault diagnosis: A review\",\"authors\":\"Huan Liu,&nbsp;YuZe Wang,&nbsp;Tao Zeng,&nbsp;HaiFeng Wang,&nbsp;Shing-Chow Chan,&nbsp;Li Ran\",\"doi\":\"10.1049/rpg2.13104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The large scale deployment of modern wind turbines and the yearly increase of installed capacity have drawn attention to their operation and maintenance issues. The development of highly reliable and low-maintenance wind turbines is an urgent demand in order to achieve the low-carbon goals, and the arrival of fault diagnosis provides assurance for its satisfactory operation and maintenance. Numerous statistical studies have pointed out that generator failures are a main cause of wind turbine system downtime. The generator, as one of the core components, converts rotating mechanical energy into electrical energy. However, the generators can hardly operate reliably towards the end of the turbine life owing to the variable-speed conditions and harsh electromagnetic environments. This article first provides a comprehensive and up-to-date review of the electrical and mechanical failures of various parts (stator, rotor, air gap and bearings) of the generator. Then the fault characteristics and diagnostic processes of generators are investigated, and the principles and processes of fault diagnosis are discussed. Finally, the application of four categories of model-based, signal-based, knowledge-based and hybrid approaches to wind turbine generator fault diagnosis is summarized. The comprehensive review shows that the hybrid approach is now the leading and most accurate tool for real-time fault diagnosis for wind turbine generators. A qualitative and quantitative assessment of algorithm performance using false alarm rates is proposed. The methodology can subsequently be applied to the wind industry.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 15\",\"pages\":\"3127-3148\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13104\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

现代风力涡轮机的大规模部署和装机容量的逐年增加引起了人们对其运行和维护问题的关注。开发高可靠性、低维护的风力涡轮机是实现低碳目标的迫切需求,而故障诊断技术的出现则为其令人满意的运行和维护提供了保障。大量统计研究指出,发电机故障是风力涡轮机系统停机的主要原因。发电机作为核心部件之一,将旋转机械能转化为电能。然而,由于变速条件和恶劣的电磁环境,发电机在风机寿命末期很难稳定运行。本文首先对发电机各部件(定子、转子、气隙和轴承)的电气和机械故障进行了全面的最新评述。然后研究了发电机的故障特征和诊断过程,并讨论了故障诊断的原理和过程。最后,总结了基于模型、基于信号、基于知识和混合四类方法在风力发电机故障诊断中的应用。综合评述表明,混合方法是目前用于风力涡轮发电机实时故障诊断的最先进、最准确的工具。文中提出了利用误报率对算法性能进行定性和定量评估的方法。该方法随后可应用于风能行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wind turbine generator failure analysis and fault diagnosis: A review

Wind turbine generator failure analysis and fault diagnosis: A review

The large scale deployment of modern wind turbines and the yearly increase of installed capacity have drawn attention to their operation and maintenance issues. The development of highly reliable and low-maintenance wind turbines is an urgent demand in order to achieve the low-carbon goals, and the arrival of fault diagnosis provides assurance for its satisfactory operation and maintenance. Numerous statistical studies have pointed out that generator failures are a main cause of wind turbine system downtime. The generator, as one of the core components, converts rotating mechanical energy into electrical energy. However, the generators can hardly operate reliably towards the end of the turbine life owing to the variable-speed conditions and harsh electromagnetic environments. This article first provides a comprehensive and up-to-date review of the electrical and mechanical failures of various parts (stator, rotor, air gap and bearings) of the generator. Then the fault characteristics and diagnostic processes of generators are investigated, and the principles and processes of fault diagnosis are discussed. Finally, the application of four categories of model-based, signal-based, knowledge-based and hybrid approaches to wind turbine generator fault diagnosis is summarized. The comprehensive review shows that the hybrid approach is now the leading and most accurate tool for real-time fault diagnosis for wind turbine generators. A qualitative and quantitative assessment of algorithm performance using false alarm rates is proposed. The methodology can subsequently be applied to the wind industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信