通过椭圆中的反射实现凹面的顶点

IF 1 2区 数学 Q1 MATHEMATICS
Gil Bor, Mark Spivakovsky, Serge Tabachnikov
{"title":"通过椭圆中的反射实现凹面的顶点","authors":"Gil Bor,&nbsp;Mark Spivakovsky,&nbsp;Serge Tabachnikov","doi":"10.1112/jlms.70033","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the billiard version of Jacobi's last geometric statement and its generalizations. Given a non-focal point <span></span><math>\n <semantics>\n <mi>O</mi>\n <annotation>$O$</annotation>\n </semantics></math> inside an elliptic billiard table, one considers the family of rays emanating from <span></span><math>\n <semantics>\n <mi>O</mi>\n <annotation>$O$</annotation>\n </semantics></math> and the caustic <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>n</mi>\n </msub>\n <annotation>$ \\Gamma _n$</annotation>\n </semantics></math> of the reflected family after <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> reflections off the ellipse, for each positive integer <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. It is known that <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\Gamma _n$</annotation>\n </semantics></math> has at least four cusps and it has been conjectured that it has exactly four (ordinary) cusps. The present paper presents a proof of this conjecture in the special case when the ellipse is a circle. In the case of an arbitrary ellipse, we give an explicit description of the location of four of the cusps of <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\Gamma _n$</annotation>\n </semantics></math>, though we do not prove that these are the only cusps.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cusps of caustics by reflection in ellipses\",\"authors\":\"Gil Bor,&nbsp;Mark Spivakovsky,&nbsp;Serge Tabachnikov\",\"doi\":\"10.1112/jlms.70033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the billiard version of Jacobi's last geometric statement and its generalizations. Given a non-focal point <span></span><math>\\n <semantics>\\n <mi>O</mi>\\n <annotation>$O$</annotation>\\n </semantics></math> inside an elliptic billiard table, one considers the family of rays emanating from <span></span><math>\\n <semantics>\\n <mi>O</mi>\\n <annotation>$O$</annotation>\\n </semantics></math> and the caustic <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$ \\\\Gamma _n$</annotation>\\n </semantics></math> of the reflected family after <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> reflections off the ellipse, for each positive integer <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>. It is known that <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\Gamma _n$</annotation>\\n </semantics></math> has at least four cusps and it has been conjectured that it has exactly four (ordinary) cusps. The present paper presents a proof of this conjecture in the special case when the ellipse is a circle. In the case of an arbitrary ellipse, we give an explicit description of the location of four of the cusps of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\Gamma _n$</annotation>\\n </semantics></math>, though we do not prove that these are the only cusps.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70033\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是雅可比最后一个几何陈述的台球桌版本及其一般化。给定一个椭圆台球桌内的非焦点 O $O$,考虑从 O $O$ 射出的射线族,以及在每个正整数 n $n$ 反射出椭圆 n $n$ 后反射族的苛值 Γ n $ \Gamma _n$ 。众所周知,Γ n $\Gamma _n$至少有四个尖顶,而且有人猜想它正好有四个(普通)尖顶。本文在椭圆是圆的特殊情况下证明了这一猜想。在任意椭圆的情况下,我们明确描述了 Γ n $\Gamma _n$ 的四个尖顶的位置,尽管我们并没有证明这些尖顶是唯一的尖顶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cusps of caustics by reflection in ellipses

This paper is concerned with the billiard version of Jacobi's last geometric statement and its generalizations. Given a non-focal point O $O$ inside an elliptic billiard table, one considers the family of rays emanating from O $O$ and the caustic Γ n $ \Gamma _n$ of the reflected family after n $n$ reflections off the ellipse, for each positive integer n $n$ . It is known that Γ n $\Gamma _n$ has at least four cusps and it has been conjectured that it has exactly four (ordinary) cusps. The present paper presents a proof of this conjecture in the special case when the ellipse is a circle. In the case of an arbitrary ellipse, we give an explicit description of the location of four of the cusps of Γ n $\Gamma _n$ , though we do not prove that these are the only cusps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信