有限子集外曲率为非负的图形、谐函数和端点数

IF 1 2区 数学 Q1 MATHEMATICS
Bobo Hua, Florentin Münch
{"title":"有限子集外曲率为非负的图形、谐函数和端点数","authors":"Bobo Hua,&nbsp;Florentin Münch","doi":"10.1112/jlms.70034","DOIUrl":null,"url":null,"abstract":"<p>We study graphs with nonnegative Bakry–Émery curvature or Ollivier curvature outside a finite subset. For such a graph, via introducing the discrete Gromov–Hausdorff convergence, we prove that the space of bounded harmonic functions is finite dimensional and, as a corollary, the number of nonparabolic ends is finite.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs with nonnegative curvature outside a finite subset, harmonic functions, and number of ends\",\"authors\":\"Bobo Hua,&nbsp;Florentin Münch\",\"doi\":\"10.1112/jlms.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study graphs with nonnegative Bakry–Émery curvature or Ollivier curvature outside a finite subset. For such a graph, via introducing the discrete Gromov–Hausdorff convergence, we prove that the space of bounded harmonic functions is finite dimensional and, as a corollary, the number of nonparabolic ends is finite.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70034\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70034","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是有限子集外具有非负巴克里-埃梅里曲率或奥利维尔曲率的图形。对于这样的图,通过引入离散格罗莫夫-豪斯多夫收敛,我们证明了有界谐函数空间是有限维的,并且作为推论,非抛物线末端的数量也是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphs with nonnegative curvature outside a finite subset, harmonic functions, and number of ends

We study graphs with nonnegative Bakry–Émery curvature or Ollivier curvature outside a finite subset. For such a graph, via introducing the discrete Gromov–Hausdorff convergence, we prove that the space of bounded harmonic functions is finite dimensional and, as a corollary, the number of nonparabolic ends is finite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信