Peter W. Kurtz, Michael A. Kurtz, Shabnam Aslani, Lilliana M. Taylor, Charley M. Goodwin, Daniel W. MacDonald, Nicolas S. Piuzzi, William M. Mihalko, Steven M. Kurtz, Jeremy L. Gilbert
{"title":"磨损、材料转移和电灼损伤在钴铬钼股骨膝关节取出术中普遍存在","authors":"Peter W. Kurtz, Michael A. Kurtz, Shabnam Aslani, Lilliana M. Taylor, Charley M. Goodwin, Daniel W. MacDonald, Nicolas S. Piuzzi, William M. Mihalko, Steven M. Kurtz, Jeremy L. Gilbert","doi":"10.1002/jbm.b.35504","DOIUrl":null,"url":null,"abstract":"<p>Despite high total knee arthroplasty (TKA) survivorship after 10 years (92%–99%), a gap persists where patient satisfaction lags clinical success. Additionally, while cobalt chrome molybdenum (CoCrMo) use decreases in primary total hip arthroplasty, the alloy continues to be widely used in TKA femoral components. In vivo, CoCrMo degradation may be associated with adverse local tissue reactions (ALTR) and compared with the hip, the damage mechanisms that may release metal in the knee and the potential biological effects remain poorly understood. In this study, we characterized the damage on 50 retrieved CoCrMo femoral knee implants paired with 19 titanium alloy and 31 CoCrMo tibial baseplates. We asked (1) what damage modes can release CoCrMo debris in vivo from femoral components and (2) how frequently does the damage occur? First, we developed a semiquantitative scoring system for abrasive wear. Then, we characterized damage modes on CoCrMo femoral implants using digital optical microscopy (DOM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). We found that wear, electrocautery damage, and Ti-6Al-4V material transfer were ubiquitous. Of the 50 CoCrMo femoral implants we investigated, we documented wear on 100% (<i>n</i> = 50/50), electrocautery damage on 98% (<i>n</i> = 49/50), and Ti-6Al-4V material transfer to the posterior condyles on 95% (<i>n</i> = 18/19). Our results suggest that these damage modes may be more prevalent than previously thought and may act as metal release mechanisms in vivo.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35504","citationCount":"0","resultStr":"{\"title\":\"Wear, Material Transfer, and Electrocautery Damage Are Ubiquitous on CoCrMo Femoral Knee Retrievals\",\"authors\":\"Peter W. Kurtz, Michael A. Kurtz, Shabnam Aslani, Lilliana M. Taylor, Charley M. Goodwin, Daniel W. MacDonald, Nicolas S. Piuzzi, William M. Mihalko, Steven M. Kurtz, Jeremy L. Gilbert\",\"doi\":\"10.1002/jbm.b.35504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite high total knee arthroplasty (TKA) survivorship after 10 years (92%–99%), a gap persists where patient satisfaction lags clinical success. Additionally, while cobalt chrome molybdenum (CoCrMo) use decreases in primary total hip arthroplasty, the alloy continues to be widely used in TKA femoral components. In vivo, CoCrMo degradation may be associated with adverse local tissue reactions (ALTR) and compared with the hip, the damage mechanisms that may release metal in the knee and the potential biological effects remain poorly understood. In this study, we characterized the damage on 50 retrieved CoCrMo femoral knee implants paired with 19 titanium alloy and 31 CoCrMo tibial baseplates. We asked (1) what damage modes can release CoCrMo debris in vivo from femoral components and (2) how frequently does the damage occur? First, we developed a semiquantitative scoring system for abrasive wear. Then, we characterized damage modes on CoCrMo femoral implants using digital optical microscopy (DOM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). We found that wear, electrocautery damage, and Ti-6Al-4V material transfer were ubiquitous. Of the 50 CoCrMo femoral implants we investigated, we documented wear on 100% (<i>n</i> = 50/50), electrocautery damage on 98% (<i>n</i> = 49/50), and Ti-6Al-4V material transfer to the posterior condyles on 95% (<i>n</i> = 18/19). Our results suggest that these damage modes may be more prevalent than previously thought and may act as metal release mechanisms in vivo.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"112 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35504\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35504\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35504","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Wear, Material Transfer, and Electrocautery Damage Are Ubiquitous on CoCrMo Femoral Knee Retrievals
Despite high total knee arthroplasty (TKA) survivorship after 10 years (92%–99%), a gap persists where patient satisfaction lags clinical success. Additionally, while cobalt chrome molybdenum (CoCrMo) use decreases in primary total hip arthroplasty, the alloy continues to be widely used in TKA femoral components. In vivo, CoCrMo degradation may be associated with adverse local tissue reactions (ALTR) and compared with the hip, the damage mechanisms that may release metal in the knee and the potential biological effects remain poorly understood. In this study, we characterized the damage on 50 retrieved CoCrMo femoral knee implants paired with 19 titanium alloy and 31 CoCrMo tibial baseplates. We asked (1) what damage modes can release CoCrMo debris in vivo from femoral components and (2) how frequently does the damage occur? First, we developed a semiquantitative scoring system for abrasive wear. Then, we characterized damage modes on CoCrMo femoral implants using digital optical microscopy (DOM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). We found that wear, electrocautery damage, and Ti-6Al-4V material transfer were ubiquitous. Of the 50 CoCrMo femoral implants we investigated, we documented wear on 100% (n = 50/50), electrocautery damage on 98% (n = 49/50), and Ti-6Al-4V material transfer to the posterior condyles on 95% (n = 18/19). Our results suggest that these damage modes may be more prevalent than previously thought and may act as metal release mechanisms in vivo.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.