Ali Jamali Jahromi, Mohammad Reza Masoudi, Mohammad Mohammadi, Shahabodin Afrasiabi
{"title":"改进电动汽车充电预测:用于概率预测的混合深度学习方法","authors":"Ali Jamali Jahromi, Mohammad Reza Masoudi, Mohammad Mohammadi, Shahabodin Afrasiabi","doi":"10.1049/gtd2.13276","DOIUrl":null,"url":null,"abstract":"<p>Electric vehicles (EVs) have gained significant attention recently. Despite their advantages, challenges in the power grid, such as providing necessary information for optimal operation, persist. High-precision forecasting techniques are essential to address the nonlinear and complex behavior of EV charging. A hybrid structure based on deep learning, called LSTLNet, has been proposed. LSTLNet combines convolutional neural networks (CNN), gated recurrent neural networks (GRU), attention mechanisms (AM), and automatic regression (AR) models. This combination improves the deterministic forecasting model and addresses the weaknesses of CNN and GRU. Deterministic prediction, which determines only one point of consumption charge, is prone to error. Therefore, probabilistic forecasting, represented as a probability distribution function (PDF) containing comprehensive statistical information, is preferred. A smooth band limit maximum likelihood (SBLM) estimator is used to indirectly predict the PDF from the data. Comparative results with conventional shallow and deep methods for similar time series forecasting demonstrate the superiority of the proposed method for both deterministic and probabilistic forecasting.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3303-3313"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13276","citationCount":"0","resultStr":"{\"title\":\"Improving electric vehicle charging forecasting: A hybrid deep learning approach for probabilistic predictions\",\"authors\":\"Ali Jamali Jahromi, Mohammad Reza Masoudi, Mohammad Mohammadi, Shahabodin Afrasiabi\",\"doi\":\"10.1049/gtd2.13276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electric vehicles (EVs) have gained significant attention recently. Despite their advantages, challenges in the power grid, such as providing necessary information for optimal operation, persist. High-precision forecasting techniques are essential to address the nonlinear and complex behavior of EV charging. A hybrid structure based on deep learning, called LSTLNet, has been proposed. LSTLNet combines convolutional neural networks (CNN), gated recurrent neural networks (GRU), attention mechanisms (AM), and automatic regression (AR) models. This combination improves the deterministic forecasting model and addresses the weaknesses of CNN and GRU. Deterministic prediction, which determines only one point of consumption charge, is prone to error. Therefore, probabilistic forecasting, represented as a probability distribution function (PDF) containing comprehensive statistical information, is preferred. A smooth band limit maximum likelihood (SBLM) estimator is used to indirectly predict the PDF from the data. Comparative results with conventional shallow and deep methods for similar time series forecasting demonstrate the superiority of the proposed method for both deterministic and probabilistic forecasting.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 21\",\"pages\":\"3303-3313\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13276\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13276\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13276","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improving electric vehicle charging forecasting: A hybrid deep learning approach for probabilistic predictions
Electric vehicles (EVs) have gained significant attention recently. Despite their advantages, challenges in the power grid, such as providing necessary information for optimal operation, persist. High-precision forecasting techniques are essential to address the nonlinear and complex behavior of EV charging. A hybrid structure based on deep learning, called LSTLNet, has been proposed. LSTLNet combines convolutional neural networks (CNN), gated recurrent neural networks (GRU), attention mechanisms (AM), and automatic regression (AR) models. This combination improves the deterministic forecasting model and addresses the weaknesses of CNN and GRU. Deterministic prediction, which determines only one point of consumption charge, is prone to error. Therefore, probabilistic forecasting, represented as a probability distribution function (PDF) containing comprehensive statistical information, is preferred. A smooth band limit maximum likelihood (SBLM) estimator is used to indirectly predict the PDF from the data. Comparative results with conventional shallow and deep methods for similar time series forecasting demonstrate the superiority of the proposed method for both deterministic and probabilistic forecasting.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf