量子处理器与实时经典通信的结合

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2024-11-20 DOI:10.1038/s41586-024-08178-2
Almudena Carrera Vazquez, Caroline Tornow, Diego Ristè, Stefan Woerner, Maika Takita, Daniel J. Egger
{"title":"量子处理器与实时经典通信的结合","authors":"Almudena Carrera Vazquez, Caroline Tornow, Diego Ristè, Stefan Woerner, Maika Takita, Daniel J. Egger","doi":"10.1038/s41586-024-08178-2","DOIUrl":null,"url":null,"abstract":"<p>Quantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time and is limited to a few quantum bits, that is, qubits, typically arranged in a planar connectivity<sup>1</sup>. However, many applications of quantum computing require more connectivity than the planar lattice offered by the hardware on more qubits than is available on a single quantum processing unit (QPU). The community hopes to tackle these limitations by connecting QPUs using classical communication, which has not yet been proven experimentally. Here we experimentally realize error-mitigated dynamic circuits and circuit cutting to create quantum states requiring periodic connectivity using up to 142 qubits spanning two QPUs with 127 qubits each connected in real time with a classical link. In a dynamic circuit, quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, that is, within a fraction of the coherence time of the qubits. Our real-time classical link enables us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU. Furthermore, the error-mitigated control flow enhances qubit connectivity and the instruction set of the hardware thus increasing the versatility of our quantum computers. Our work demonstrates that we can use several quantum processors as one with error-mitigated dynamic circuits enabled by a real-time classical link.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"99 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining quantum processors with real-time classical communication\",\"authors\":\"Almudena Carrera Vazquez, Caroline Tornow, Diego Ristè, Stefan Woerner, Maika Takita, Daniel J. Egger\",\"doi\":\"10.1038/s41586-024-08178-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time and is limited to a few quantum bits, that is, qubits, typically arranged in a planar connectivity<sup>1</sup>. However, many applications of quantum computing require more connectivity than the planar lattice offered by the hardware on more qubits than is available on a single quantum processing unit (QPU). The community hopes to tackle these limitations by connecting QPUs using classical communication, which has not yet been proven experimentally. Here we experimentally realize error-mitigated dynamic circuits and circuit cutting to create quantum states requiring periodic connectivity using up to 142 qubits spanning two QPUs with 127 qubits each connected in real time with a classical link. In a dynamic circuit, quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, that is, within a fraction of the coherence time of the qubits. Our real-time classical link enables us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU. Furthermore, the error-mitigated control flow enhances qubit connectivity and the instruction set of the hardware thus increasing the versatility of our quantum computers. Our work demonstrates that we can use several quantum processors as one with error-mitigated dynamic circuits enabled by a real-time classical link.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-024-08178-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08178-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

量子计算机利用量子力学定律处理信息。目前的量子硬件噪音大,只能短时间存储信息,而且仅限于几个量子比特,即量子比特,通常以平面连接方式排列1。然而,量子计算的许多应用需要比硬件提供的平面晶格更多的连接性,而单个量子处理单元(QPU)所能提供的量子比特数量更多。业界希望通过使用经典通信连接 QPU 来解决这些限制,而经典通信尚未得到实验验证。在这里,我们通过实验实现了误差减弱的动态电路和电路切割,使用多达 142 个量子比特创建了需要周期性连接的量子态,这些量子比特跨越两个 QPU,每个 QPU 有 127 个量子比特,通过经典链路实时连接。在动态电路中,量子门可在运行时间内,即在量子比特相干时间的一小部分内,由电路中段测量的结果进行经典控制。我们的实时经典链路使我们能够根据另一个量子单元的测量结果,在一个量子单元上应用量子门。此外,误差缓解控制流增强了量子比特的连通性和硬件指令集,从而提高了量子计算机的通用性。我们的工作证明,我们可以将多个量子处理器作为一个整体使用,并通过实时经典链路启用误差缓解动态电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining quantum processors with real-time classical communication

Combining quantum processors with real-time classical communication

Quantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time and is limited to a few quantum bits, that is, qubits, typically arranged in a planar connectivity1. However, many applications of quantum computing require more connectivity than the planar lattice offered by the hardware on more qubits than is available on a single quantum processing unit (QPU). The community hopes to tackle these limitations by connecting QPUs using classical communication, which has not yet been proven experimentally. Here we experimentally realize error-mitigated dynamic circuits and circuit cutting to create quantum states requiring periodic connectivity using up to 142 qubits spanning two QPUs with 127 qubits each connected in real time with a classical link. In a dynamic circuit, quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, that is, within a fraction of the coherence time of the qubits. Our real-time classical link enables us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU. Furthermore, the error-mitigated control flow enhances qubit connectivity and the instruction set of the hardware thus increasing the versatility of our quantum computers. Our work demonstrates that we can use several quantum processors as one with error-mitigated dynamic circuits enabled by a real-time classical link.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信