{"title":"新型钒络合物调节乳酸乙酯的均相和异相选择性氧化作用","authors":"Yi Zhang, Shengyun Liao, Haitao Zhu, Qian Zhao, Jiaxin Zheng, Shuxian Ge, Jiaojiao Shi, Xinli Tong","doi":"10.1016/j.jcat.2024.115849","DOIUrl":null,"url":null,"abstract":"As a green and sustainable alternative for producing ethyl pyruvate (EP), the selective aerobic oxidation of ethyl lactate (EL) is still facing issues such as low catalytic efficiency, harsh reaction conditions and catalyst instability. Herein, a novel crystalline vanadium-based coordination compound (VTC=VPTPYCl<sub>2</sub>(H<sub>2</sub>O), PTPY = 4′-phenyl-2,2′:6′,2′’-terpyridine) has been designed and synthesized. A highly efficient homogeneous catalytic system (VTC-400-O<sub>2</sub>-CH<sub>3</sub>CN, 400 represents the activation temperature) and a recyclable heterogeneous system (VTC-500-O<sub>2</sub>-CH<sub>3</sub>CN) for the liquid-phase conversion of EL to EP are developed using molecular oxygen as oxidant through activating VTC at different temperature. In VTC-400-O<sub>2</sub>-CH<sub>3</sub>CN system, EL can be completely converted within 4 h, and the yield of EP is 77.8 %, which outperforms the state-of-art reported catalytic system. Meanwhile, the heterogeneous VTC-500 catalyst can also promote the full conversion of EL within 4 h, and its activity remains basically unchanged after being used for 10 times. Structural characterization reveals that the soluble VTC breaks the weak coordination V-Cl bonds at a lower activation temperature of 400 ° C to expose more vanadium-based catalytic sites, but the framework of ligand remains intact. However, the organic derived carbon skeleton at higher temperature of 500 ° C can effectively confine the V-based active species and prevent the dissolution of the catalyst, which impels the transition of the homogeneous to heterogeneous catalytic system.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"99 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous and heterogeneous selective oxidation of ethyl lactate regulated by a novel vanadium complex\",\"authors\":\"Yi Zhang, Shengyun Liao, Haitao Zhu, Qian Zhao, Jiaxin Zheng, Shuxian Ge, Jiaojiao Shi, Xinli Tong\",\"doi\":\"10.1016/j.jcat.2024.115849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a green and sustainable alternative for producing ethyl pyruvate (EP), the selective aerobic oxidation of ethyl lactate (EL) is still facing issues such as low catalytic efficiency, harsh reaction conditions and catalyst instability. Herein, a novel crystalline vanadium-based coordination compound (VTC=VPTPYCl<sub>2</sub>(H<sub>2</sub>O), PTPY = 4′-phenyl-2,2′:6′,2′’-terpyridine) has been designed and synthesized. A highly efficient homogeneous catalytic system (VTC-400-O<sub>2</sub>-CH<sub>3</sub>CN, 400 represents the activation temperature) and a recyclable heterogeneous system (VTC-500-O<sub>2</sub>-CH<sub>3</sub>CN) for the liquid-phase conversion of EL to EP are developed using molecular oxygen as oxidant through activating VTC at different temperature. In VTC-400-O<sub>2</sub>-CH<sub>3</sub>CN system, EL can be completely converted within 4 h, and the yield of EP is 77.8 %, which outperforms the state-of-art reported catalytic system. Meanwhile, the heterogeneous VTC-500 catalyst can also promote the full conversion of EL within 4 h, and its activity remains basically unchanged after being used for 10 times. Structural characterization reveals that the soluble VTC breaks the weak coordination V-Cl bonds at a lower activation temperature of 400 ° C to expose more vanadium-based catalytic sites, but the framework of ligand remains intact. However, the organic derived carbon skeleton at higher temperature of 500 ° C can effectively confine the V-based active species and prevent the dissolution of the catalyst, which impels the transition of the homogeneous to heterogeneous catalytic system.\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcat.2024.115849\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2024.115849","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Homogeneous and heterogeneous selective oxidation of ethyl lactate regulated by a novel vanadium complex
As a green and sustainable alternative for producing ethyl pyruvate (EP), the selective aerobic oxidation of ethyl lactate (EL) is still facing issues such as low catalytic efficiency, harsh reaction conditions and catalyst instability. Herein, a novel crystalline vanadium-based coordination compound (VTC=VPTPYCl2(H2O), PTPY = 4′-phenyl-2,2′:6′,2′’-terpyridine) has been designed and synthesized. A highly efficient homogeneous catalytic system (VTC-400-O2-CH3CN, 400 represents the activation temperature) and a recyclable heterogeneous system (VTC-500-O2-CH3CN) for the liquid-phase conversion of EL to EP are developed using molecular oxygen as oxidant through activating VTC at different temperature. In VTC-400-O2-CH3CN system, EL can be completely converted within 4 h, and the yield of EP is 77.8 %, which outperforms the state-of-art reported catalytic system. Meanwhile, the heterogeneous VTC-500 catalyst can also promote the full conversion of EL within 4 h, and its activity remains basically unchanged after being used for 10 times. Structural characterization reveals that the soluble VTC breaks the weak coordination V-Cl bonds at a lower activation temperature of 400 ° C to expose more vanadium-based catalytic sites, but the framework of ligand remains intact. However, the organic derived carbon skeleton at higher temperature of 500 ° C can effectively confine the V-based active species and prevent the dissolution of the catalyst, which impels the transition of the homogeneous to heterogeneous catalytic system.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.