利用多色 DNA 框架进行大规模复用光学记录

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-11-20 DOI:10.1016/j.matt.2024.10.020
Lu Song, Ruiyan Guo, Li Pan, Yishakejiang Saimaiti, Shaopeng Wang, Fan Li, Xiuhai Mao, Fei Wang, Qi Li, Dekai Ye, Sisi Jia, Gang Liu, Min Li, Xiaolei Zuo, Chunhai Fan
{"title":"利用多色 DNA 框架进行大规模复用光学记录","authors":"Lu Song, Ruiyan Guo, Li Pan, Yishakejiang Saimaiti, Shaopeng Wang, Fan Li, Xiuhai Mao, Fei Wang, Qi Li, Dekai Ye, Sisi Jia, Gang Liu, Min Li, Xiaolei Zuo, Chunhai Fan","doi":"10.1016/j.matt.2024.10.020","DOIUrl":null,"url":null,"abstract":"Rapid data growth highlights the increasing demand for high-density storage solutions. Multiplexed optical recording based on synthetic inorganic nanoparticles represents the next generation of data storage. However, diverse photophysical properties of nanoparticles reduce their reliability and information density. Here, we present a highly programmable polychromatic DNA tetrahedral framework (PDTF) that enables precise control over their optical performances. By programming the size of PDTFs, we reduce the feature size of the recording medium to 3.4 nm, which was 41-fold smaller than that of commercially available Blu-ray technology. PDTF chains with up to 47 million distinct color codes further enhance optical storage with higher information capacity. Additionally, nanopatterning technology integrates the PDTFs into on-chip architectures, achieving an impressive density of 25.9 Gb/cm<sup>2</sup>. Finally, the PDTFs demonstrate excellent re-writability and long-term stability (10,826 years at room temperature), exhibiting promising potential in high-density and secure data storage applications.","PeriodicalId":388,"journal":{"name":"Matter","volume":"6 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massively multiplexed optical recording with polychromatic DNA frameworks\",\"authors\":\"Lu Song, Ruiyan Guo, Li Pan, Yishakejiang Saimaiti, Shaopeng Wang, Fan Li, Xiuhai Mao, Fei Wang, Qi Li, Dekai Ye, Sisi Jia, Gang Liu, Min Li, Xiaolei Zuo, Chunhai Fan\",\"doi\":\"10.1016/j.matt.2024.10.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid data growth highlights the increasing demand for high-density storage solutions. Multiplexed optical recording based on synthetic inorganic nanoparticles represents the next generation of data storage. However, diverse photophysical properties of nanoparticles reduce their reliability and information density. Here, we present a highly programmable polychromatic DNA tetrahedral framework (PDTF) that enables precise control over their optical performances. By programming the size of PDTFs, we reduce the feature size of the recording medium to 3.4 nm, which was 41-fold smaller than that of commercially available Blu-ray technology. PDTF chains with up to 47 million distinct color codes further enhance optical storage with higher information capacity. Additionally, nanopatterning technology integrates the PDTFs into on-chip architectures, achieving an impressive density of 25.9 Gb/cm<sup>2</sup>. Finally, the PDTFs demonstrate excellent re-writability and long-term stability (10,826 years at room temperature), exhibiting promising potential in high-density and secure data storage applications.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.10.020\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.10.020","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

数据的快速增长凸显了对高密度存储解决方案日益增长的需求。基于合成无机纳米粒子的多路复用光学记录技术代表了新一代数据存储技术。然而,纳米粒子的各种光物理性质降低了它们的可靠性和信息密度。在这里,我们介绍了一种高度可编程的多色 DNA 四面体框架(PDTF),它能精确控制纳米粒子的光学性能。通过对 PDTF 的尺寸进行编程,我们将记录介质的特征尺寸缩小到了 3.4 nm,是市面上蓝光技术的 41 倍。具有多达 4700 万个不同颜色代码的 PDTF 链进一步提高了光存储的信息容量。此外,纳米图案技术将 PDTF 集成到芯片架构中,实现了 25.9 Gb/cm2 的惊人密度。最后,PDTFs 表现出卓越的可重写性和长期稳定性(室温下 10826 年),在高密度和安全数据存储应用中展现出巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Massively multiplexed optical recording with polychromatic DNA frameworks

Massively multiplexed optical recording with polychromatic DNA frameworks
Rapid data growth highlights the increasing demand for high-density storage solutions. Multiplexed optical recording based on synthetic inorganic nanoparticles represents the next generation of data storage. However, diverse photophysical properties of nanoparticles reduce their reliability and information density. Here, we present a highly programmable polychromatic DNA tetrahedral framework (PDTF) that enables precise control over their optical performances. By programming the size of PDTFs, we reduce the feature size of the recording medium to 3.4 nm, which was 41-fold smaller than that of commercially available Blu-ray technology. PDTF chains with up to 47 million distinct color codes further enhance optical storage with higher information capacity. Additionally, nanopatterning technology integrates the PDTFs into on-chip architectures, achieving an impressive density of 25.9 Gb/cm2. Finally, the PDTFs demonstrate excellent re-writability and long-term stability (10,826 years at room temperature), exhibiting promising potential in high-density and secure data storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信