Dedong He, Yimin Zhang, Tan Li, Dingkai Chen, Hao Wang, Lei Zhang, Jiangping Liu, Xiaohua Cao, Jichang Lu, Yongming Luo
{"title":"设计具有双重封闭微环境的超稳定表面暴露镍纳米粒子,用于高温甲烷干法转化","authors":"Dedong He, Yimin Zhang, Tan Li, Dingkai Chen, Hao Wang, Lei Zhang, Jiangping Liu, Xiaohua Cao, Jichang Lu, Yongming Luo","doi":"10.1002/adfm.202412895","DOIUrl":null,"url":null,"abstract":"Conversion of CO<sub>2</sub> and CH<sub>4</sub> into syngas offers a promising route to reduce emissions of greenhouse gases, which facilitates large-scale carbon fixation and boosts carbon-neutral goal. The main obstacle for CO<sub>2</sub>/CH<sub>4</sub> reforming is the lack of durable catalysts showing both high metal-exposure and high-temperature structure stability, since the reported Ni-based catalysts have difficulty in avoiding deactivation by sintering metal at high temperature. Herein, ultra-small Ni nanoparticles, which display multiple characteristics of high surface-exposure and stabilized structure, are constructed from the evolution of atomically dispersed low-valent nickel under a dually confined microenvironment. Consequently, the developed strategy can not only break the stable-exposure trade-off in heterogeneous catalysis but also provide new opportunity for the engineering of high-performance and sintering-resistant reforming catalysts as well as other durable heterogeneous catalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"1 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Ultra-Stable and Surface-Exposed Ni Nanoparticles with Dually Confined Microenvironment for High-Temperature Methane Dry Reforming\",\"authors\":\"Dedong He, Yimin Zhang, Tan Li, Dingkai Chen, Hao Wang, Lei Zhang, Jiangping Liu, Xiaohua Cao, Jichang Lu, Yongming Luo\",\"doi\":\"10.1002/adfm.202412895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversion of CO<sub>2</sub> and CH<sub>4</sub> into syngas offers a promising route to reduce emissions of greenhouse gases, which facilitates large-scale carbon fixation and boosts carbon-neutral goal. The main obstacle for CO<sub>2</sub>/CH<sub>4</sub> reforming is the lack of durable catalysts showing both high metal-exposure and high-temperature structure stability, since the reported Ni-based catalysts have difficulty in avoiding deactivation by sintering metal at high temperature. Herein, ultra-small Ni nanoparticles, which display multiple characteristics of high surface-exposure and stabilized structure, are constructed from the evolution of atomically dispersed low-valent nickel under a dually confined microenvironment. Consequently, the developed strategy can not only break the stable-exposure trade-off in heterogeneous catalysis but also provide new opportunity for the engineering of high-performance and sintering-resistant reforming catalysts as well as other durable heterogeneous catalysts.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202412895\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412895","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
将 CO2 和 CH4 转化为合成气为减少温室气体排放提供了一条前景广阔的途径,这有利于大规模碳固定并促进碳中和目标的实现。CO2/CH4 重整的主要障碍是缺乏具有高金属暴露和高温结构稳定性的耐用催化剂,因为已报道的镍基催化剂难以避免高温下金属烧结而失活。在本文中,超小型镍纳米颗粒是由原子分散的低价镍在双重限制的微环境下演化构建而成,具有高表面暴露和结构稳定的多重特性。因此,所开发的策略不仅能打破异相催化中稳定-暴露权衡的难题,还能为高性能、抗烧结重整催化剂以及其他耐用异相催化剂的工程化提供新的机遇。
Designing Ultra-Stable and Surface-Exposed Ni Nanoparticles with Dually Confined Microenvironment for High-Temperature Methane Dry Reforming
Conversion of CO2 and CH4 into syngas offers a promising route to reduce emissions of greenhouse gases, which facilitates large-scale carbon fixation and boosts carbon-neutral goal. The main obstacle for CO2/CH4 reforming is the lack of durable catalysts showing both high metal-exposure and high-temperature structure stability, since the reported Ni-based catalysts have difficulty in avoiding deactivation by sintering metal at high temperature. Herein, ultra-small Ni nanoparticles, which display multiple characteristics of high surface-exposure and stabilized structure, are constructed from the evolution of atomically dispersed low-valent nickel under a dually confined microenvironment. Consequently, the developed strategy can not only break the stable-exposure trade-off in heterogeneous catalysis but also provide new opportunity for the engineering of high-performance and sintering-resistant reforming catalysts as well as other durable heterogeneous catalysts.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.