垂直磁化磁绝缘体中的室温强轨道力矩

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ganesh Ji Omar, Pierluigi Gargiani, Manuel Valvidares, Zhi Shiuh Lim, Saurav Prakash, T. S. Suraj, Abhijit Ghosh, Sze Ter Lim, James Lourembam, A. Ariando
{"title":"垂直磁化磁绝缘体中的室温强轨道力矩","authors":"Ganesh Ji Omar, Pierluigi Gargiani, Manuel Valvidares, Zhi Shiuh Lim, Saurav Prakash, T. S. Suraj, Abhijit Ghosh, Sze Ter Lim, James Lourembam, A. Ariando","doi":"10.1002/adfm.202414188","DOIUrl":null,"url":null,"abstract":"The balance between the orbital and spin magnetic moments in a magnetic system is the heart of many intriguing phenomena. Here, experimental evidence of a large orbital moment is shown, which competes with its spin counterpart in a ferrimagnetic insulator thulium iron garnet, Tm<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>. Leveraging element-specific X-ray magnetic circular dichroism (XMCD), it is established that the dominant contribution to the orbital moment originates from 4<i>f</i> orbitals of Tm. Besides the large Tm orbital moment, intriguingly, the results also reveal a smaller but evident non-zero XMCD signal in the O <i>K</i> edge, suggesting additional spin-orbit coupling and exchange interactions with the nearest neighbor Fe atoms. The unquenched orbital moment is primarily responsible for a significant reduction in <i>g</i>-factor, typically 2 in transition metals, as determined independently using ferromagnetic resonance spectroscopy. The findings reveal a non-linear reduction in the <i>g</i>-factor from 1.7 at 300 K to 1.56 at 200 K in Tm<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> thin films. These results provide critical insights into the role of the <i>f</i> orbitals in long-range magnetic order and stimulate further exploration in orbitronics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"23 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room Temperature Strong Orbital Moments in Perpendicularly Magnetized Magnetic Insulator\",\"authors\":\"Ganesh Ji Omar, Pierluigi Gargiani, Manuel Valvidares, Zhi Shiuh Lim, Saurav Prakash, T. S. Suraj, Abhijit Ghosh, Sze Ter Lim, James Lourembam, A. Ariando\",\"doi\":\"10.1002/adfm.202414188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The balance between the orbital and spin magnetic moments in a magnetic system is the heart of many intriguing phenomena. Here, experimental evidence of a large orbital moment is shown, which competes with its spin counterpart in a ferrimagnetic insulator thulium iron garnet, Tm<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>. Leveraging element-specific X-ray magnetic circular dichroism (XMCD), it is established that the dominant contribution to the orbital moment originates from 4<i>f</i> orbitals of Tm. Besides the large Tm orbital moment, intriguingly, the results also reveal a smaller but evident non-zero XMCD signal in the O <i>K</i> edge, suggesting additional spin-orbit coupling and exchange interactions with the nearest neighbor Fe atoms. The unquenched orbital moment is primarily responsible for a significant reduction in <i>g</i>-factor, typically 2 in transition metals, as determined independently using ferromagnetic resonance spectroscopy. The findings reveal a non-linear reduction in the <i>g</i>-factor from 1.7 at 300 K to 1.56 at 200 K in Tm<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> thin films. These results provide critical insights into the role of the <i>f</i> orbitals in long-range magnetic order and stimulate further exploration in orbitronics.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202414188\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414188","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性系统中轨道磁矩和自旋磁矩之间的平衡是许多有趣现象的核心。在这里,实验证明在铁磁性绝缘体铥铁榴石(Tm3Fe5O12)中存在一个巨大的轨道磁矩,它与其对应的自旋磁矩相互竞争。利用特定元素的 X 射线磁圆二色性(XMCD),可以确定轨道力矩的主要贡献来自 Tm 的 4f 轨道。除了巨大的 Tm 轨道力矩之外,有趣的是,研究结果还揭示了 O K 边缘较小但明显的非零 XMCD 信号,这表明与近邻铁原子之间存在额外的自旋轨道耦合和交换相互作用。未淬火轨道力矩是导致 g 因子显著降低的主要原因,过渡金属中的 g 因子通常为 2,这是用铁磁共振光谱独立测定的。研究结果表明,在 Tm3Fe5O12 薄膜中,g 因子从 300 K 时的 1.7 非线性降低到 200 K 时的 1.56。这些结果为了解 f 轨道在长程磁序中的作用提供了重要见解,并激发了对轨道电子学的进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room Temperature Strong Orbital Moments in Perpendicularly Magnetized Magnetic Insulator

Room Temperature Strong Orbital Moments in Perpendicularly Magnetized Magnetic Insulator
The balance between the orbital and spin magnetic moments in a magnetic system is the heart of many intriguing phenomena. Here, experimental evidence of a large orbital moment is shown, which competes with its spin counterpart in a ferrimagnetic insulator thulium iron garnet, Tm3Fe5O12. Leveraging element-specific X-ray magnetic circular dichroism (XMCD), it is established that the dominant contribution to the orbital moment originates from 4f orbitals of Tm. Besides the large Tm orbital moment, intriguingly, the results also reveal a smaller but evident non-zero XMCD signal in the O K edge, suggesting additional spin-orbit coupling and exchange interactions with the nearest neighbor Fe atoms. The unquenched orbital moment is primarily responsible for a significant reduction in g-factor, typically 2 in transition metals, as determined independently using ferromagnetic resonance spectroscopy. The findings reveal a non-linear reduction in the g-factor from 1.7 at 300 K to 1.56 at 200 K in Tm3Fe5O12 thin films. These results provide critical insights into the role of the f orbitals in long-range magnetic order and stimulate further exploration in orbitronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信