{"title":"电池用有机硝基化合物","authors":"Donghong Wang, Qiwang Shao, Xianjia Cao, Mengxuan Qin, Changyou Zhang, Lei Zhu, Shasha Wang, Qing Li, Dongming Liu, Chunyi Zhi","doi":"10.1002/adfm.202416000","DOIUrl":null,"url":null,"abstract":"High-performance energy storage technologies, with the representatives of rechargeable and redox flow batteries, are required due to the flying development of electrical gadgets and the increase in demand for sustainable energy supply. Nevertheless, most of these batteries are made of inorganic active materials with several critical deficiencies, preventing their further development. Organic nitro compounds (ONCs) are an appealing alternative in this context, providing the advantages of multi-electron redox processes and adjustable battery performance by structural modification. In this review, the utilization of ONCs as the electrode materials of batteries, interfacial layer materials for metal batteries, as well as redox shuttle additives is explored. The authors also go over material design issues, together with the corresponding electrochemical reaction mechanisms, and an overview of related viewpoints and future research directions to facilitate the advancement of this field is provided.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"57 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Nitro Compounds for Batteries\",\"authors\":\"Donghong Wang, Qiwang Shao, Xianjia Cao, Mengxuan Qin, Changyou Zhang, Lei Zhu, Shasha Wang, Qing Li, Dongming Liu, Chunyi Zhi\",\"doi\":\"10.1002/adfm.202416000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance energy storage technologies, with the representatives of rechargeable and redox flow batteries, are required due to the flying development of electrical gadgets and the increase in demand for sustainable energy supply. Nevertheless, most of these batteries are made of inorganic active materials with several critical deficiencies, preventing their further development. Organic nitro compounds (ONCs) are an appealing alternative in this context, providing the advantages of multi-electron redox processes and adjustable battery performance by structural modification. In this review, the utilization of ONCs as the electrode materials of batteries, interfacial layer materials for metal batteries, as well as redox shuttle additives is explored. The authors also go over material design issues, together with the corresponding electrochemical reaction mechanisms, and an overview of related viewpoints and future research directions to facilitate the advancement of this field is provided.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202416000\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416000","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-performance energy storage technologies, with the representatives of rechargeable and redox flow batteries, are required due to the flying development of electrical gadgets and the increase in demand for sustainable energy supply. Nevertheless, most of these batteries are made of inorganic active materials with several critical deficiencies, preventing their further development. Organic nitro compounds (ONCs) are an appealing alternative in this context, providing the advantages of multi-electron redox processes and adjustable battery performance by structural modification. In this review, the utilization of ONCs as the electrode materials of batteries, interfacial layer materials for metal batteries, as well as redox shuttle additives is explored. The authors also go over material design issues, together with the corresponding electrochemical reaction mechanisms, and an overview of related viewpoints and future research directions to facilitate the advancement of this field is provided.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.