{"title":"独特的半球配位驱动农药残留探针:增强三氟拉林线性识别的稳定性","authors":"Meifen Huang, Liang Jiao, Xiangying Li, Qiong Xu, Zhehui Weng, Qiong Wu, Haijun Pang","doi":"10.1016/j.jhazmat.2024.136608","DOIUrl":null,"url":null,"abstract":"Trifluralin (TRL) is an effective and persistent herbicide, but its extensive and prolonged use has increasingly posed ecological and environmental health risks, making the development of convenient and rapid TRL detection methods essential for environmental protection and food safety. In the present research, a novel fluorescent probe was designed and developed, Zn-χ-L, for the rapid and selective detection of TRL in complex environments. The sensor demonstrates excellent sensitivity and stability, while also exhibiting significant resistance to interference from other pesticides and metal ions. Moreover, Zn-χ-L exhibited stable performance across various solvents and showed resistance to interference from other pesticides and metal ions. Molecular docking and theoretical calculations indicate that the unique recognition of TRL molecules by Zn-χ-L is related to its specific hemispheric structural feature, which forms strong coordination interactions between Zn-χ-L and TRL through coordination bonds, π-π stacking, and halogen bonds. This special conformation not only enables the formation of coordination bonds but also establishes multiple π-π stacking and halogen bonding interactions between Zn-χ-L and TRL, leading to efficient charge transfer and exceptional probe performance.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"252 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique Hemispherical Coordination-Drivened Pesticide Residue Probes: Enhanced Stability in Linear Recognition for Trifluralin\",\"authors\":\"Meifen Huang, Liang Jiao, Xiangying Li, Qiong Xu, Zhehui Weng, Qiong Wu, Haijun Pang\",\"doi\":\"10.1016/j.jhazmat.2024.136608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trifluralin (TRL) is an effective and persistent herbicide, but its extensive and prolonged use has increasingly posed ecological and environmental health risks, making the development of convenient and rapid TRL detection methods essential for environmental protection and food safety. In the present research, a novel fluorescent probe was designed and developed, Zn-χ-L, for the rapid and selective detection of TRL in complex environments. The sensor demonstrates excellent sensitivity and stability, while also exhibiting significant resistance to interference from other pesticides and metal ions. Moreover, Zn-χ-L exhibited stable performance across various solvents and showed resistance to interference from other pesticides and metal ions. Molecular docking and theoretical calculations indicate that the unique recognition of TRL molecules by Zn-χ-L is related to its specific hemispheric structural feature, which forms strong coordination interactions between Zn-χ-L and TRL through coordination bonds, π-π stacking, and halogen bonds. This special conformation not only enables the formation of coordination bonds but also establishes multiple π-π stacking and halogen bonding interactions between Zn-χ-L and TRL, leading to efficient charge transfer and exceptional probe performance.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136608\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136608","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Unique Hemispherical Coordination-Drivened Pesticide Residue Probes: Enhanced Stability in Linear Recognition for Trifluralin
Trifluralin (TRL) is an effective and persistent herbicide, but its extensive and prolonged use has increasingly posed ecological and environmental health risks, making the development of convenient and rapid TRL detection methods essential for environmental protection and food safety. In the present research, a novel fluorescent probe was designed and developed, Zn-χ-L, for the rapid and selective detection of TRL in complex environments. The sensor demonstrates excellent sensitivity and stability, while also exhibiting significant resistance to interference from other pesticides and metal ions. Moreover, Zn-χ-L exhibited stable performance across various solvents and showed resistance to interference from other pesticides and metal ions. Molecular docking and theoretical calculations indicate that the unique recognition of TRL molecules by Zn-χ-L is related to its specific hemispheric structural feature, which forms strong coordination interactions between Zn-χ-L and TRL through coordination bonds, π-π stacking, and halogen bonds. This special conformation not only enables the formation of coordination bonds but also establishes multiple π-π stacking and halogen bonding interactions between Zn-χ-L and TRL, leading to efficient charge transfer and exceptional probe performance.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.