{"title":"蒽基储能","authors":"Natalia B. Shustova","doi":"10.1016/j.joule.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>In a recent issue of <em>Chem</em>, Professor Han and coworkers advance the anthracene-based solar energy storage materials capable of self-activated heat release through a cascading cycloreversion process, mimicking fossil fuel combustion and presenting new possibilities for scalable, renewable heat storage applications. This preview highlights two significant breakthroughs in molecular solar thermal energy storage systems developed in the Han group.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 11","pages":"Pages 2957-2959"},"PeriodicalIF":38.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthracene-based energy storage\",\"authors\":\"Natalia B. Shustova\",\"doi\":\"10.1016/j.joule.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a recent issue of <em>Chem</em>, Professor Han and coworkers advance the anthracene-based solar energy storage materials capable of self-activated heat release through a cascading cycloreversion process, mimicking fossil fuel combustion and presenting new possibilities for scalable, renewable heat storage applications. This preview highlights two significant breakthroughs in molecular solar thermal energy storage systems developed in the Han group.</div></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 11\",\"pages\":\"Pages 2957-2959\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124004689\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124004689","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In a recent issue of Chem, Professor Han and coworkers advance the anthracene-based solar energy storage materials capable of self-activated heat release through a cascading cycloreversion process, mimicking fossil fuel combustion and presenting new possibilities for scalable, renewable heat storage applications. This preview highlights two significant breakthroughs in molecular solar thermal energy storage systems developed in the Han group.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.