时间分数扩散波方程虚拟元素方法的快速评估和稳健误差分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jixiao Guo , Yanping Chen , Qin Liang
{"title":"时间分数扩散波方程虚拟元素方法的快速评估和稳健误差分析","authors":"Jixiao Guo ,&nbsp;Yanping Chen ,&nbsp;Qin Liang","doi":"10.1016/j.camwa.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>The article is concerned with and analyzes the <em>α</em>-robust error bound for time-fractional diffusion wave equations with weakly singular solutions. Nonuniform <em>L</em>1-type time meshes are used to handle non-smooth systems, and the sum-of-exponentials (SOEs) approximation for the kernels function is adopted to reduce the memory storage and computational cost. Meanwhile, the virtual element method (VEM), which can deal with complex geometric meshes and achieve arbitrary order of accuracy, is constructed for spatial discretization. Based on the explicit factors and discrete complementary convolution kernels, the optimal error bound of the fully discrete SOEs-VEM scheme in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is derived in detail and that is <em>α</em>-robust, i.e., the bounds will not explosive growth while <span><math><mi>α</mi><mo>→</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. Finally, some numerical experiments are implemented to verify the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"177 ","pages":"Pages 41-57"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast evaluation and robust error analysis of the virtual element methods for time fractional diffusion wave equation\",\"authors\":\"Jixiao Guo ,&nbsp;Yanping Chen ,&nbsp;Qin Liang\",\"doi\":\"10.1016/j.camwa.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The article is concerned with and analyzes the <em>α</em>-robust error bound for time-fractional diffusion wave equations with weakly singular solutions. Nonuniform <em>L</em>1-type time meshes are used to handle non-smooth systems, and the sum-of-exponentials (SOEs) approximation for the kernels function is adopted to reduce the memory storage and computational cost. Meanwhile, the virtual element method (VEM), which can deal with complex geometric meshes and achieve arbitrary order of accuracy, is constructed for spatial discretization. Based on the explicit factors and discrete complementary convolution kernels, the optimal error bound of the fully discrete SOEs-VEM scheme in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is derived in detail and that is <em>α</em>-robust, i.e., the bounds will not explosive growth while <span><math><mi>α</mi><mo>→</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. Finally, some numerical experiments are implemented to verify the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"177 \",\"pages\":\"Pages 41-57\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004929\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004929","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

文章关注并分析了具有弱奇异解的时间分数扩散波方程的α-稳健误差约束。文章采用非均匀 L1 型时间网格来处理非光滑系统,并对核函数采用指数和(SOEs)近似来减少内存存储和计算成本。同时,构建了可处理复杂几何网格并实现任意精度阶数的虚拟元素法(VEM),用于空间离散化。基于显式因子和离散互补卷积核,详细推导了完全离散 SOEs-VEM 方案在 L2 规范下的最优误差约束,并且是 α-robust 的,即当 α→2- 时,约束不会爆炸性增长。最后,通过一些数值实验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast evaluation and robust error analysis of the virtual element methods for time fractional diffusion wave equation
The article is concerned with and analyzes the α-robust error bound for time-fractional diffusion wave equations with weakly singular solutions. Nonuniform L1-type time meshes are used to handle non-smooth systems, and the sum-of-exponentials (SOEs) approximation for the kernels function is adopted to reduce the memory storage and computational cost. Meanwhile, the virtual element method (VEM), which can deal with complex geometric meshes and achieve arbitrary order of accuracy, is constructed for spatial discretization. Based on the explicit factors and discrete complementary convolution kernels, the optimal error bound of the fully discrete SOEs-VEM scheme in the L2-norm is derived in detail and that is α-robust, i.e., the bounds will not explosive growth while α2. Finally, some numerical experiments are implemented to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信