修正 DtN 图的弹性散射问题的拟合和有限元分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaojuan Liu , Maojun Li , Kun Wang , Jiangming Xie
{"title":"修正 DtN 图的弹性散射问题的拟合和有限元分析","authors":"Xiaojuan Liu ,&nbsp;Maojun Li ,&nbsp;Kun Wang ,&nbsp;Jiangming Xie","doi":"10.1016/j.camwa.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the most popular artificial boundary conditions, the Dirichlet-to-Neumann (DtN) boundary condition has been widely developed and investigated for solving the exterior wave scattering problems. This work studies the application of a Fourier series DtN map for the elastic scattering problem. The infinite series of the DtN map requires to be truncated in the practical numerical application, and then the well-posedness of the resulting boundary value problem (BVP) becomes a challenging issue. By introducing a corresponding eigensystem to the bilinear form together with appropriate truncated norm estimates, we prove the well-posedness of the corresponding BVP in a weak sense. In addition, a priori error estimates that incorporate the effects of the finite element discretization and the truncation of infinite series are derived. Finally, numerical tests are implemented to validate the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"177 ","pages":"Pages 58-77"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and finite element analysis for the elastic scattering problem with a modified DtN map\",\"authors\":\"Xiaojuan Liu ,&nbsp;Maojun Li ,&nbsp;Kun Wang ,&nbsp;Jiangming Xie\",\"doi\":\"10.1016/j.camwa.2024.11.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As one of the most popular artificial boundary conditions, the Dirichlet-to-Neumann (DtN) boundary condition has been widely developed and investigated for solving the exterior wave scattering problems. This work studies the application of a Fourier series DtN map for the elastic scattering problem. The infinite series of the DtN map requires to be truncated in the practical numerical application, and then the well-posedness of the resulting boundary value problem (BVP) becomes a challenging issue. By introducing a corresponding eigensystem to the bilinear form together with appropriate truncated norm estimates, we prove the well-posedness of the corresponding BVP in a weak sense. In addition, a priori error estimates that incorporate the effects of the finite element discretization and the truncation of infinite series are derived. Finally, numerical tests are implemented to validate the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"177 \",\"pages\":\"Pages 58-77\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124005133\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005133","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

作为最常用的人工边界条件之一,Dirichlet-to-Neumann(DtN)边界条件在解决外部波散射问题方面得到了广泛的发展和研究。这项工作研究了傅里叶级数 DtN 图在弹性散射问题中的应用。在实际数值应用中,DtN 图的无穷级数需要截断,因此所产生的边界值问题(BVP)的良好拟合成为一个具有挑战性的问题。通过引入双线性形式的相应特征系统以及适当的截断规范估计,我们证明了相应 BVP 在弱意义上的好拟性。此外,我们还得出了包含有限元离散化和无穷级数截断影响的先验误差估计。最后,通过数值检验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness and finite element analysis for the elastic scattering problem with a modified DtN map
As one of the most popular artificial boundary conditions, the Dirichlet-to-Neumann (DtN) boundary condition has been widely developed and investigated for solving the exterior wave scattering problems. This work studies the application of a Fourier series DtN map for the elastic scattering problem. The infinite series of the DtN map requires to be truncated in the practical numerical application, and then the well-posedness of the resulting boundary value problem (BVP) becomes a challenging issue. By introducing a corresponding eigensystem to the bilinear form together with appropriate truncated norm estimates, we prove the well-posedness of the corresponding BVP in a weak sense. In addition, a priori error estimates that incorporate the effects of the finite element discretization and the truncation of infinite series are derived. Finally, numerical tests are implemented to validate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信