二维泊松方程的最低阶稳定自由虚拟元素法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Stefano Berrone , Andrea Borio , Francesca Marcon
{"title":"二维泊松方程的最低阶稳定自由虚拟元素法","authors":"Stefano Berrone ,&nbsp;Andrea Borio ,&nbsp;Francesca Marcon","doi":"10.1016/j.camwa.2024.11.017","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the first order Enlarged Enhancement Virtual Element Method (E<sup>2</sup>VEM) for the Poisson problem. The method allows the definition of bilinear forms that do not require a stabilization term, thanks to the exploitation of higher order polynomial projections that are made computable by suitably enlarging the enhancement property (from which comes the prefix E<sup>2</sup>) of local virtual spaces. We provide a sufficient condition for the well-posedness and optimal order a priori error estimates. We present numerical tests on convex and non-convex polygonal meshes that confirm the robustness of the method and the theoretical convergence rates.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"177 ","pages":"Pages 78-99"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lowest order stabilization free virtual element method for the 2D Poisson equation\",\"authors\":\"Stefano Berrone ,&nbsp;Andrea Borio ,&nbsp;Francesca Marcon\",\"doi\":\"10.1016/j.camwa.2024.11.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyze the first order Enlarged Enhancement Virtual Element Method (E<sup>2</sup>VEM) for the Poisson problem. The method allows the definition of bilinear forms that do not require a stabilization term, thanks to the exploitation of higher order polynomial projections that are made computable by suitably enlarging the enhancement property (from which comes the prefix E<sup>2</sup>) of local virtual spaces. We provide a sufficient condition for the well-posedness and optimal order a priori error estimates. We present numerical tests on convex and non-convex polygonal meshes that confirm the robustness of the method and the theoretical convergence rates.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"177 \",\"pages\":\"Pages 78-99\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124005145\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005145","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了针对泊松问题的一阶扩大增强虚拟元素法(E2VEM)。由于利用了高阶多项式投影,通过适当扩大局部虚拟空间的增强特性(前缀 E2 即由此而来),该方法允许定义不需要稳定项的双线性形式。我们提供了一个充分条件,以实现问题解决和最优阶先验误差估计。我们介绍了对凸和非凸多边形网格的数值测试,证实了该方法的稳健性和理论收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lowest order stabilization free virtual element method for the 2D Poisson equation
We analyze the first order Enlarged Enhancement Virtual Element Method (E2VEM) for the Poisson problem. The method allows the definition of bilinear forms that do not require a stabilization term, thanks to the exploitation of higher order polynomial projections that are made computable by suitably enlarging the enhancement property (from which comes the prefix E2) of local virtual spaces. We provide a sufficient condition for the well-posedness and optimal order a priori error estimates. We present numerical tests on convex and non-convex polygonal meshes that confirm the robustness of the method and the theoretical convergence rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信