Borui Cai, Wenhao Wu, Xiaozeng Miao, Xi Yang, Limin Duan, Daohui Lin, Kun Yang
{"title":"一种具有最佳孔径的新型 kgd 拓扑共价有机框架,可用于高效分离苯/环己烷","authors":"Borui Cai, Wenhao Wu, Xiaozeng Miao, Xi Yang, Limin Duan, Daohui Lin, Kun Yang","doi":"10.1002/smll.202408742","DOIUrl":null,"url":null,"abstract":"Separation of benzene and cyclohexane is essential for obtaining high-purity cyclohexane in the chemical industry and for resource recovery from exhaust gas, but is one of the most challenging separation processes due to their highly similar boiling points and kinetic diameters. Herein, based on the isoreticular contraction strategy, a novel covalent organic framework (i.e., HFPB-TAB-COF) with <b>kgd</b> topological structure and average pore size of 5.70 Å, between the kinetic diameters of benzene (5.60 Å) and cyclohexane (6.10 Å), is synthesized for benzene/cyclohexane separation by pore confinement effect. HFPB-TAB-COF has the highest ideal adsorbed solution theory (IAST) selectivity of 36.0 for benzene/cyclohexane separation, and can produce 0.48 mmol g<sup>−1</sup> cyclohexane with purity of +99% from 50:50 (v:v) benzene/cyclohexane mixture under dynamic condition, higher than reported separation materials. Optimizing the pore size of COFs by isoreticular contraction strategy can trigger the pore confinement effect for better meeting the separation challenge in industry.","PeriodicalId":228,"journal":{"name":"Small","volume":"99 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel kgd-Topological Covalent Organic Framework with Optimum Pore Size for Efficient Benzene/Cyclohexane Separation\",\"authors\":\"Borui Cai, Wenhao Wu, Xiaozeng Miao, Xi Yang, Limin Duan, Daohui Lin, Kun Yang\",\"doi\":\"10.1002/smll.202408742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separation of benzene and cyclohexane is essential for obtaining high-purity cyclohexane in the chemical industry and for resource recovery from exhaust gas, but is one of the most challenging separation processes due to their highly similar boiling points and kinetic diameters. Herein, based on the isoreticular contraction strategy, a novel covalent organic framework (i.e., HFPB-TAB-COF) with <b>kgd</b> topological structure and average pore size of 5.70 Å, between the kinetic diameters of benzene (5.60 Å) and cyclohexane (6.10 Å), is synthesized for benzene/cyclohexane separation by pore confinement effect. HFPB-TAB-COF has the highest ideal adsorbed solution theory (IAST) selectivity of 36.0 for benzene/cyclohexane separation, and can produce 0.48 mmol g<sup>−1</sup> cyclohexane with purity of +99% from 50:50 (v:v) benzene/cyclohexane mixture under dynamic condition, higher than reported separation materials. Optimizing the pore size of COFs by isoreticular contraction strategy can trigger the pore confinement effect for better meeting the separation challenge in industry.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202408742\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408742","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Novel kgd-Topological Covalent Organic Framework with Optimum Pore Size for Efficient Benzene/Cyclohexane Separation
Separation of benzene and cyclohexane is essential for obtaining high-purity cyclohexane in the chemical industry and for resource recovery from exhaust gas, but is one of the most challenging separation processes due to their highly similar boiling points and kinetic diameters. Herein, based on the isoreticular contraction strategy, a novel covalent organic framework (i.e., HFPB-TAB-COF) with kgd topological structure and average pore size of 5.70 Å, between the kinetic diameters of benzene (5.60 Å) and cyclohexane (6.10 Å), is synthesized for benzene/cyclohexane separation by pore confinement effect. HFPB-TAB-COF has the highest ideal adsorbed solution theory (IAST) selectivity of 36.0 for benzene/cyclohexane separation, and can produce 0.48 mmol g−1 cyclohexane with purity of +99% from 50:50 (v:v) benzene/cyclohexane mixture under dynamic condition, higher than reported separation materials. Optimizing the pore size of COFs by isoreticular contraction strategy can trigger the pore confinement effect for better meeting the separation challenge in industry.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.